LIU Gui-xiang, LU Yi, JIN Xiang. Simulation on powder nonlinear coefficients[J]. Journal of Applied Optics, 2009, 30(3): 457-459.
Citation: LIU Gui-xiang, LU Yi, JIN Xiang. Simulation on powder nonlinear coefficients[J]. Journal of Applied Optics, 2009, 30(3): 457-459.

Simulation on powder nonlinear coefficients

More Information
  • Based on the Kurtz theory, a measurement system of powder second-harmonic (SHG) using fiber spectrometer was designed. The test system can measure SHG in different directions by rotating the arm and not changing-direction of incident fundamental light. It has good accuracy and sensitivity. It enlarges phase-matching particles from 46m to 250m. The fundamental wavelength of 1.064m was used to measure KIO3 crystal powder SHG. The test result shows that KIO3 crystal powder has the phase-matching characteristics, which is consistent with the previous reports. The nonlinear coefficient d2 of KIO3 crystal powder obtained by simulating the experimental curve is 9.710-12m/V. The simulation value agrees with d32 of KIO3 crystal reported previously. This method is proved feasible and could be used in the study of nonlinear characteristics for other crystal materials.
  • [1]TOSHIKUNI KAINO. Waveguide fabrication using organic nonlinear optical materials[J].Journal of Optics A: Pure and Applied Optics, 2000,2(4):1-7.
    [2]TANAKA K, NARAZAKI A, YONEZAKI Y, et al. Poling-induced structural change and second-order nonlinearity of Na+-doped Nb2O5-TeO2 glass[J].Journal of Physics: Condensed Matter,2000,12(30):513-518.
    [3]AHLHEIN M, BARZONKSS M, BEDWORTH  P V, et al. Chormophres with strong heterocyclic acceptors: a poled polymer with a large electrooptic coefficient[J]. Science, 1996,271(5247):335-337.
    [4]DALTON L R, HOOPER A W, WU B, et al. Polymeric electro-optic madulators: materials synthesis and processing[J].Advanced Materials, 1995,7(6):519-540.
    [5]KURTZ S K, PENY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968,39(8):3798-3813.
    [6]HALBOUT J M, BLIT S, CHUNG  L. Evaluation of the phase-matching properties of nonlinear optical materials in the powder form[J]. IEEE Journal of Quantum Electronics, 1981,17(4):513-517.
    [7]李铭全,蔡志岗,李鹏,等. 粉末SHG法的光强角分布研究[J].中国激光, 2002,29(11) :1019-1022.
    LI Ming-quan, CAI Zhi-gang, LI Peng, et al. Study on angle distribution of light intensity in powder SHG method[J].Chinese journal of lasers,2002,29(11):1019-1022.(in Chinese with an English abstract)
    [8]马仰华,赵建林,王文礼,等. 双轴晶体中二次谐波产生的最佳相位匹配条件[J]. 物理学报,2005,54(5):2084-2089.
    MA Yang-Hua, ZHAO Jan-Lin, WANG Wen-Li, et al. Optimum phase matching for SHG in biaxial crystals[J].Acta physica sinica, 2005,54(5):20842089.(in Chinese with an English abstract)
    [9]张克从,王希敏. 非线性光学晶体材料科学[M]. 北京:科学出版社, 1996.
    ZHANG Ke-cong, WANG Xi-min. Nonlinear crystal materials science[M].Beijing: Science Press, 1996. (in Chinese)
    [10]尹鑫,吕孟凯,程端平,等. KIO3晶体的折射率和非线性性能[J]. 物理学报,1987,36(11):1492-1495.
    YIN Xin, LU Meng-kai, CHENG Duan-ping, et al. The refractive indices and nonlinear optical property of KIO3 crystal[J]. Acta physica sinica,1987,36(11):1492-1495. (in Chinese with an English abstract)
  • Related Articles

    [1]YUE Jin. Influence of quintic nonlinearity on interaction of chirped ultrashort laser pulses[J]. Journal of Applied Optics, 2013, 34(4): 594-598.
    [2]LIAO Tian-he, LIU Wei, GAO Qiong. Thermal blooming of repetitively pulsed laser propagationin different atmospheric models[J]. Journal of Applied Optics, 2012, 33(4): 799-803.
    [3]XIAO Shao-rong, ZHU Run, WANG Ya-ji. Measurement system for atmospheric aerosol extinction coefficient[J]. Journal of Applied Optics, 2012, 33(2): 255-259.
    [4]LIU Guo-dong, LUO Fu, WANG Gui-bing, LI Jian-feng, FU Bo. Numerical simulation of ultrafast energy transport in monocrystalline silicon films under femtosecond laser irradiation[J]. Journal of Applied Optics, 2009, 30(2): 325-329.
    [5]YAN Shun-sheng, HU Shun-xing, HU Huan-ling, FAN Guang-qiang. A new derivation method for aerosol extinction coefficient detected by Raman lidar[J]. Journal of Applied Optics, 2008, 29(3): 433-435.
    [6]WU Yao, LI Gao-ping, YU Shuai, WU Lei. Measurement method of thermal loss coefficient of calorimetric laser energy meter[J]. Journal of Applied Optics, 2008, 29(3): 398-402.
    [7]ZHANG Can-lin, CHEN Qian. Matching coefficients for BV-EMCCD and reflective radiation spectra of objects[J]. Journal of Applied Optics, 2008, 29(2): 166-169.
    [8]WANG Jian-hua, FAN Kai-guo, LIU Zhi-feng, SUN Jian-ping, ZHANG Jin-tao, WANG Zhe. Measurement of linear expansion coefficient of silicon in high temperature with laser interferometric dilatometer[J]. Journal of Applied Optics, 2007, 28(5): 645-648.
    [9]WANG Lei, YANG Zhao-jin, LI Gao-ping, ZONG Ya-kang. An Equipment for Measuring the Temperature Coefficient of Refractive Index of Infrared Materials[J]. Journal of Applied Optics, 2005, 26(3): 54-56.
    [10]LI Hong-xia, WU Fu-quan, FAN Ji-yang. Sellmeier Coefficients for the Refractive Indices of Calcite at Crystal Different Temperatures[J]. Journal of Applied Optics, 2004, 25(5): 7-10.

Catalog

    Article views (2852) PDF downloads (1235) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return