WU Yao, LI Gao-ping, YU Shuai, WU Lei. Measurement method of thermal loss coefficient of calorimetric laser energy meter[J]. Journal of Applied Optics, 2008, 29(3): 398-402.
Citation: WU Yao, LI Gao-ping, YU Shuai, WU Lei. Measurement method of thermal loss coefficient of calorimetric laser energy meter[J]. Journal of Applied Optics, 2008, 29(3): 398-402.

Measurement method of thermal loss coefficient of calorimetric laser energy meter

More Information
  • Corresponding author:

    WU Yao

  • With the illumination of the long pulse laser, the calorimetric laser energy obtained by the traditional data processing differs significantly from the actual laser energy due to the thermal loss. To solve this problem, the mathematic model of temperature distribution of the energy probe under laser illumination was established. Taking heat conduction and radiation into consideration, a measurement method of the thermal loss coefficient for characterizing the extent of thermal loss of the laser energy meter is proposed. The validity of the measurement method was verified by experiments. The obtained thermal loss coefficient can also be taken as an important parameter to evaluate the calorimetric laser energy meter.
  • Related Articles

    [1]MO Yuxiao, ZHOU Ziye, FAN Chenguang, YANG Yujing, TIAN Zhen. Modal testing and kinetic finite element correction of mirror assemblies for co-phase devices[J]. Journal of Applied Optics, 2024, 45(6): 1147-1157. DOI: 10.5768/JAO202445.0601006
    [2]XING Minghui, LI Jianjun, ZHAI Wenchao, TANG Qi, ZHENG Xiaobing. Design of support structure for small caliber off-axis parabolic reflector based on finite element analysis[J]. Journal of Applied Optics, 2019, 40(6): 1160-1166. DOI: 10.5768/JAO201940.0605004
    [3]HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004
    [4]Song Dong-sheng, Yang Yuan-cheng, Gao Ya, Wang Jing, Bu Zhong-hong. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4): 497-502. DOI: 10.5768/JAO201536.0401001
    [5]ZHANG Ming-hui, LIU Yuan-zheng, LAN Pei-feng, ZHANG Zhen-rong. Structural finite element analysis of path length control mirror forlaser gyroscopes[J]. Journal of Applied Optics, 2011, 32(2): 353-357.
    [6]LI Yu-tao, QU Xiao-chi, ZHANG Tian-xiao. Finite element analysis of IR optical system based on ANSYS[J]. Journal of Applied Optics, 2008, 29(2): 174-177.
    [7]ZHAO Shi-bin, ZHAO Jia, ZHANG Cun-lin, DING You-fu, LI Yan-hong. Finite element simulation and analysis for type identification of defects under material surfaces in infrared thermal wave nondestructive detection[J]. Journal of Applied Optics, 2007, 28(5): 559-563.
    [8]LIU Shao-bin, YANG Hong-bo. New data transform method for thermal/mechanical/optical integrated analysis:interferogram interpolation[J]. Journal of Applied Optics, 2007, 28(5): 553-558.
    [9]LIU Quan-xi, QI Wen-zong, HAO Qiu-long, ZHAO Fang-dong. Finite element analysis of thermal effect of photovoltaic detector irradiated by laser[J]. Journal of Applied Optics, 2007, 28(3): 275-279.
    [10]LI Fu, RUAN Ping, MA Xiao-long, ZHAO Bao-chang. Opto-mechanical system analysis method[J]. Journal of Applied Optics, 2006, 27(6): 497-501.

Catalog

    Article views (2513) PDF downloads (977) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return