CAO Tingting, AN Guowen. Brillouin strain and temperature sensing based on elliptical-core chalcogenide fiber[J]. Journal of Applied Optics, 2025, 46(2): 465-472. DOI: 10.5768/JAO202546.0208002
Citation: CAO Tingting, AN Guowen. Brillouin strain and temperature sensing based on elliptical-core chalcogenide fiber[J]. Journal of Applied Optics, 2025, 46(2): 465-472. DOI: 10.5768/JAO202546.0208002

Brillouin strain and temperature sensing based on elliptical-core chalcogenide fiber

More Information
  • Received Date: March 18, 2024
  • Revised Date: January 09, 2025
  • Available Online: March 14, 2025
  • Highly nonlinear chalcogenide fibers are widely used in the applications of Brillouin fiber sensing and fiber lasing. A stimulated Brillouin scattering (SBS) dual-parameter sensing method based on a highly birefringent chalcogenide polymer composite fiber (As2Se3-PMMA) was introduced, a highly nonlinear elliptical-core As2Se3-PMMA tapered fiber was designed and fabricated, and the SBS characteristics of the fiber were measured using a Brillouin optical time-domain analysis (BOTDA) system. Due to different Brillouin frequency shifts of temperature and strain in the fast and slow axes of the elliptical-core As2Se3-PMMA tapered fiber, the dual-parameter measurement of temperature and strain of the sensor was achieved. The temperature sensitivities in the fast and slow axes of the elliptical-core chalcogenide tapered fiber are −2.772 MHz/°C and −2.605 MHz/°C, respectively, and strain sensitivities are −21.9 kHz/με and −16.3 kHz/με, respectively. By establishing a matrix based on the different temperatures and strain responses of the fast and slow axes, the temperature and strain resolution of the chalcogenide optical fiber sensor are 0.9 °C and 28 με, respectively.

  • [1]
    MIZUNO Y, HE Z Y, HOTATE K. Dependence of the Brillouin frequency shift on temperature in a tellurite glass fiber and a bismuth-oxide highly-nonlinear fiber[J]. Applied Physics Express, 2009, 2(11): 112402. doi: 10.1143/APEX.2.112402
    [2]
    BERNINI R, PERSICHETTI G, CATALANO E, et al. Refractive index sensing by Brillouin scattering in side-polished optical fibers[J]. Optics Letters, 2018, 43(10): 2280-2283.
    [3]
    李时宜, 李浩, 季文斌, 等. 基于布里渊光时域反射仪的边坡监测光纤传感器结构[J]. 光子学报, 2021, 50(9): 0906005. doi: 10.3788/gzxb20215009.0906005

    LI Shiyi, LI Hao, JI Wenbin, et al. Optical fiber sensing structure for slope monitoring based on Brillouin optical time domain reflectometer[J]. Acta Photonica Sinica, 2021, 50(9): 0906005. doi: 10.3788/gzxb20215009.0906005
    [4]
    ZAGHLOUL M A S, WANG M H, MILIONE G, et al. Discrimination of temperature and strain in Brillouin optical time domain analysis using a multicore optical fiber[J]. Sensors, 2018, 18(4): 1176. doi: 10.3390/s18041176
    [5]
    SUN X G, BEDARD K, LI J, et al. A dual-Brillouin-peak optical fiber for simultaneous distributed strain and temperature measurement[C]//Advanced Sensor Systems and Applications VIII. Beijing, China: SPIE, 2018: 7-12.
    [6]
    SABATIER C, GIRARD S, MESCIA L, et al. Combined experimental and simulation study of the fiber composition effects on its Brillouin scattering signature[J]. Journal of Lightwave Technology, 2019, 37(18): 4619-4624.
    [7]
    XU Y P, REN M Q, LU Y, et al. Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber[J]. Optics Letters, 2016, 41(6): 1138-1141. doi: 10.1364/OL.41.001138
    [8]
    XING C, KE C J, GUO Z, et al. Distributed multi-parameter sensing utilizing Brillouin frequency shifts contributed by multiple acoustic modes in SSMF[J]. Optics Express, 2018, 26(22): 28793-28807. doi: 10.1364/OE.26.028793
    [9]
    FLOREA C, BASHKANSKY M, DUTTON Z, et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers[J]. Optics Express, 2006, 14(25): 12063-12070.
    [10]
    MÄGI E C, FU L B, NGUYEN H C, et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers[J]. Optics Express, 2007, 15(16): 10324-10329. doi: 10.1364/OE.15.010324
    [11]
    BAKER C, ROCHETTE M. Highly nonlinear hybrid AsSe-PMMA microtapers[J]. Optics Express, 2010, 18(12): 12391-12398. doi: 10.1364/OE.18.012391
    [12]
    SAXENA B, BAKER C, BAO X Y, et al. High birefringent Brillouin frequency shifts in a single-mode As2Se3-PMMA microtaper induced by a transverse load[J]. Optics Letters, 2019, 44(19): 4789-4792.
    [13]
    HORIGUCHI T, KURASHIMA T, TATEDA M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers[J]. IEEE Photonics Technology Letters, 1989, 1(5): 107-108.
    [14]
    MIZUNO Y, NAKAMURA K. Brillouin scattering in polymer optical fibers: fundamental properties and potential use in sensors[J]. Polymers, 2011, 3(2): 886-898. doi: 10.3390/polym3020886
    [15]
    DEROH M, SYLVESTRE T, CHRETIEN J, et al. Towards athermal Brillouin strain sensing based on heavily Germania-doped core optical fibers[J]. 2019, 4(3): 030801.
    [16]
    BEUGNOT J C, LAUDE V. Electrostriction and guidance of acoustic phonons in optical fibers[J]. Physical Review B, 2012, 86(22): 224304.
    [17]
    WANG H Y, GAO S, BAKER C, et al. Wide-range strain sensor based on Brillouin frequency and linewidth in an As2Se3-PMMA hybrid microfiber[J]. Optics Express, 2020, 28(15): 22933-22945. doi: 10.1364/OE.397683
    [18]
    BEUGNOT J C, AHMAD R, ROCHETTE M, et al. Tunable stimulated Brillouin scattering in hybrid polymer-chalcogenide tapered fibers[C]//Nonlinear Optics and Its Applications VIII and Quantum Optics III. Brussels, Belgium: SPIE, 2014: 88-93.
    [19]
    ABEDIN K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 2005, 13(25): 10266-10271. doi: 10.1364/OPEX.13.010266
    [20]
    MIZUNO Y, NAKAMURA K. Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing[J]. Optics Letters, 2010, 35(23): 3985-3987.
    [21]
    GAO S, BAKER C, CHEN L, et al. Simultaneous measurement of temperature and strain in a dual-core As2Se3-PMMA taper[J]. IEEE Photonics Technology Letters, 2017, 30(1): 79-82.
    [22]
    ZOU W, HE Z, HOTATE K. Complete discrimination of strain and temperature using Brillouin frequency shift and birefringence in a polarization-maintaining fiber[J]. Optics Express, 2009, 17(3): 1248-1255. doi: 10.1364/OE.17.001248
  • Related Articles

    [1]MO Yuxiao, ZHOU Ziye, FAN Chenguang, YANG Yujing, TIAN Zhen. Modal testing and kinetic finite element correction of mirror assemblies for co-phase devices[J]. Journal of Applied Optics, 2024, 45(6): 1147-1157. DOI: 10.5768/JAO202445.0601006
    [2]XING Minghui, LI Jianjun, ZHAI Wenchao, TANG Qi, ZHENG Xiaobing. Design of support structure for small caliber off-axis parabolic reflector based on finite element analysis[J]. Journal of Applied Optics, 2019, 40(6): 1160-1166. DOI: 10.5768/JAO201940.0605004
    [3]HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004
    [4]Song Dong-sheng, Yang Yuan-cheng, Gao Ya, Wang Jing, Bu Zhong-hong. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4): 497-502. DOI: 10.5768/JAO201536.0401001
    [5]ZHANG Ming-hui, LIU Yuan-zheng, LAN Pei-feng, ZHANG Zhen-rong. Structural finite element analysis of path length control mirror forlaser gyroscopes[J]. Journal of Applied Optics, 2011, 32(2): 353-357.
    [6]LI Yu-tao, QU Xiao-chi, ZHANG Tian-xiao. Finite element analysis of IR optical system based on ANSYS[J]. Journal of Applied Optics, 2008, 29(2): 174-177.
    [7]ZHAO Shi-bin, ZHAO Jia, ZHANG Cun-lin, DING You-fu, LI Yan-hong. Finite element simulation and analysis for type identification of defects under material surfaces in infrared thermal wave nondestructive detection[J]. Journal of Applied Optics, 2007, 28(5): 559-563.
    [8]LIU Quan-xi, QI Wen-zong, HAO Qiu-long, ZHAO Fang-dong. Finite element analysis of thermal effect of photovoltaic detector irradiated by laser[J]. Journal of Applied Optics, 2007, 28(3): 275-279.
    [9]XU Qiang, WANG Yan-feng, ZHOU Hu, DONG Ji-hong, LI Wei, XU Shu-yan. Design and analysis of lightweight structure and support for primary mirror of space optic remote sensor[J]. Journal of Applied Optics, 2007, 28(1): 43-46.
    [10]LI Fu, RUAN Ping, MA Xiao-long, ZHAO Bao-chang. Methods of opto-mechanical analysis with Zernike polynomials[J]. Journal of Applied Optics, 2007, 28(1): 38-42.
  • Cited by

    Periodical cited type(2)

    1. 李圆圆,王春艳,王志强. 高精度半导体激光打标机F-θ镜头设计. 应用光学. 2020(01): 202-208 . 本站查看
    2. 周燕,沈涛. 多波长广角f-theta透镜光学设计. 应用光学. 2017(04): 533-537 . 本站查看

    Other cited types(1)

Catalog

    Article views (9) PDF downloads (5) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return