HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004
Citation: HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004

Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials

More Information
  • Received Date: August 29, 2018
  • Revised Date: September 25, 2018
  • It is able to generate the ultrasonic waves on the surface of materials based on the laser-generated ultrasonic technology which is an important part of non-destructive testing for material defects. With the finite element analysis software of Abaqus, the defect model of the symmetric aluminum to be measured was established based on the laser ultrasonic thermo-elastic mechanism. Besides, the propagation characteristics of the laser-induced surface wave in the material and the interaction process between the laser-induced surface wave and the defects were simulated. Through the numerical simulation and theoretical analysis, the results show that the amplitude of the reflected wave increases with the depth of the defect and reaches steady state when the depth of the defect is up to a certain value. Instead, the width of the defect has a limited effect on the reflected wave. All of these conclusions can promote the development of the laser-generated ultrasonic technology for the detection and identification of the material defects.
  • [1]
    YU Q, HE C X.Application of nondestructive testing in composite material[J].Engineering and Test, 2009, 49(2):24-29. http://d.old.wanfangdata.com.cn/Periodical/xyjs201703010
    [2]
    HOU R F, WANG W H, MO R Y, et al.Laser ultrasound detection of surface crack in porcelain insulators[J].Laser Technology, 2014, 38(1):35-38. http://cn.bing.com/academic/profile?id=d8f409bb609dd9acd9432bfe972109cb&encoded=0&v=paper_preview&mkt=zh-cn
    [3]
    MA J, ZHAO Y, ZHOU F Y, et al.Effect of defocusing amount on thickness measurement based on laser ultrasound[J].Laser Technology, 2015, 39(2):349-352. http://cn.bing.com/academic/profile?id=1e43ed94739f906e51dc58c56ca732c2&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    CHEN K, FU X, DORANTES-GONZALEZ D J, et al.Laser-generated surface acoustic wave technique for crack monitoring-a review[J].International Journal of Automation Technology, 2013, 7(2):211-220. doi: 10.20965/ijat.2013.p0211
    [5]
    DU D, CAI G R, TIAN Y, et al.Automatic inspection of weld defects with X-ray real time imaging[J].Lecture Notes in Control and Information Sciences, 2007, 359-366. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026780223
    [6]
    STEVEN M S, JAMES R L, TADIQ A, et al.Thermo graphic inspection of Composite Structures[J].SAMPLE Journal, 2003, 39(5):53-58.
    [7]
    杨玉娥, 闫天婷, 任保胜.复合材料中碳纤维方向和弯曲缺陷的微波检测[J].航空材料学报, 2015, 35(6):91-96. http://d.old.wanfangdata.com.cn/Periodical/hkclxb201506015

    YANG Yu e, YAN Tian ting, REN Bao sheng.Microwave evaluation of direction and bending defect of carbon fiber in composite material[J].Journal of Aeronautical Materials, 2015, 35(6):91-96. http://d.old.wanfangdata.com.cn/Periodical/hkclxb201506015
    [8]
    SCHMIDT K, LITTLE J, ELLINGSON W A.A portable microwave scanning technique for nondestructive testing of multilayered dielectric materials[C].State of California: Ceramic Engineering and Science Proceedings, 2009, 29(6): 179-189.
    [9]
    LOUTAS T H, KOSTOPOULOS V.Health monitoring of carbon, wove reinforced composites.Damage assessment by using advanced signal processing techniques.Part Ⅰ:acoustic emission monitoring and damage mechanisms evolution[J].Composites Science and Technology, 2009, 69(2):265-272. doi: 10.1016/j.compscitech.2008.07.020
    [10]
    THOMAS S, BONGIOVANN C, NUTT S R.In situ estimation of through-thickness resin flow using ultrasound[J].Composites Science and Technology, 2008, 38(15):3093-3098. http://cn.bing.com/academic/profile?id=1ea06691a38505f3f6d80c406afd184e&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    刘化龙.变压器局放超声检测和定位技术现状及发展[J].重庆理工大学学报:自然科学版, 2014(7):71-79. http://d.old.wanfangdata.com.cn/Periodical/cqgxyxb201407015

    LIU Hualong.Actualities and perspectives of techniques of detection and localization of partial discharges in power transformers adopting ultrasonic methods[J].Journal of Chongqing University of Technology:Natural Science, 2014(7):71-79. http://d.old.wanfangdata.com.cn/Periodical/cqgxyxb201407015
    [12]
    LI C H, LI S N, et al.A comparison of laser ultrasonic measurements and finite element simulations for evaluating the elastic properties of tissue mimicking phantoms[J].Optics & Laser Technology, 2012, 44(4):866-871. doi: 10.1016/j.optlastec.2011.11.017
    [13]
    马保全, 周正干.航空航天复合材料结构非接触无损检测技术的进展及发展趋势[J].航空学报, 2014, 35(7):1787-1803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407003

    MA Baoqan, ZHOU Zhenggan.Progress and development trends of composite structure evaluation using noncontact nondestructive testing techniques in aviation and aerospace industries[J].Acta Aeronautica Et Astronautica Sinica, 2014, 35(7):1787-1803. http://d.old.wanfangdata.com.cn/Periodical/hkxb201407003
    [14]
    LEE J R, CHONG S Y, JEONG H, et al.A time-of-flight mapping method for laser ultrasound guided in a pipe and its application to wall thinning visualization[J].Ndt & E International, 2011, 44(8):680-691. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f5ea71db5d06d1e803bbea40005121a6
    [15]
    KRISHNASWAMY S.Theory and applications of laser-ultrasonic techniques[M].USA:Ultrasonic Nondestructive Evaluation, 2003, 437-438.
    [16]
    胡文祥, 孙伟, 钱梦禄, 等.脉冲激光线源热弹激励的圆柱表面波声场[J].同济大学学报:自然科学版, 2005, 33(3):400-403. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200503026

    HU Wenxiang, SUN Wei, QIAN Menglu, et al.Acoustic field of cylindrical surface waves generated thermo elastically by a pulsed laser line source[J].Journal of Tongji University:Natural Science, 2005, 33(3):400-403 http://d.old.wanfangdata.com.cn/Periodical/tjdxxb200503026
    [17]
    王敬时, 徐晓东, 刘晓峻, 等.利用激光超声技术研究表面微裂纹缺陷材料的低通滤波效应[J].物理学报, 2008, 57(12):7765-7769. http://d.old.wanfangdata.com.cn/Periodical/wlxb200812057

    WANG Jinshi, XUN Xiaodong, LIU Xiaojun, et al.Study on low-pass filtering effect of surface microcrack defect materials by laser ultrasonic technology[J].Journal of Physics, 2008, 57(12):7765-7769. http://d.old.wanfangdata.com.cn/Periodical/wlxb200812057
    [18]
    程曦, 徐晓东, 刘晓峻, 等.利用激光超声研究功能梯度材料中声表面波的传播特性[J].声学学报, 2011, 36(2):145-149. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201102008

    CHENG Xi, XU Xiaodong, LIU Xiaojun, et al.Studying the propagating properties of surface wave traveling in functional gradient materials by laser ultrasonic[J].Acta Acustica, 2011, 36(2):145-149 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=shengxxb201102008
    [19]
    罗玉昆.激光超声有限元分析与信号检测方法研究[D].长沙: 国防科学技术大学, 2012: 9-20.

    LUO Yukun, Study on finite element analysis and signal testing methods of laser-generated ultrasonic[D].Changsha: National University of Defense Technology, 2012: 9-20.
  • Cited by

    Periodical cited type(2)

    1. 朱朝阳,叶伟,彭慧龙,陈昱坤. 倍增层Si浓度对β-FeSi_2/Si红外探测器性能的影响研究. 河南科技. 2025(01): 73-77 .
    2. 方小坤,叶伟,权贝贝,朱朝阳,萧生. Ⅰ型倍增层对异质SAM结构InSb-APD红外探测器性能的影响. 应用光学. 2024(03): 659-664 . 本站查看

    Other cited types(1)

Catalog

    Article views (1880) PDF downloads (84) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return