Citation: | SHANG Han, MENG Xiangxiang, QIU Mingjie. Optical design of ultraviolet continuous zoom lens for sulfur dioxide remote sensing monitoring[J]. Journal of Applied Optics, 2024, 45(6): 1108-1114. DOI: 10.5768/JAO202445.0601001 |
In order to meet the needs of high-definition imaging of atmospheric sulfur dioxide remote sensing monitoring at different distances, a continuous zoom ultraviolet lens was designed. Based on the theoretical analysis of Gaussian optical solution of zoom system, four groups of positive compensation mechanical zoom initial structure were selected, three intervals of zoom group solution of two-group mechanical compensation zoom system were calculated, and the power distribution of zoom group and compensation group was obtained. According to the absorption characteristics of atmospheric sulfur dioxide to ultraviolet light, the working band was determined to be 250 nm~340 nm. An ultraviolet continuous zoom optical system with zoom ratio of 10, F number of 4 and total length of 431.5 mm was designed by using Zemax optical design software, and the motion curves of zoom group and compensation group were drawn by using Matlab software. The focal length range of the system is 25 mm~250 mm, the short focal field range is 0°~7.67°, the medium focal field range is 0°~1.45°, and the telephoto field range is 0°~0.77°. During zoom process, the transfer function is greater than 0.3 at 107 lp/mm, the distortion is less than 1%, and the radius of the speckle is less than 5.5 μm. This system is suitable for monitoring sulfur dioxide in various scenarios, such as ship exhaust, industrial production chimney exhaust and so on.
[1] |
蒋斌. 环境空气中二氧化硫监测技术的发展[J]. 环境科学与管理, 2012, 37(1): 158-160. doi: 10.3969/j.issn.1673-1212.2012.01.039
JIANG Bin. Development of monitoring technology of sulfur dioxide in the air[J]. Environmental Science and Management, 2012, 37(1): 158-160. doi: 10.3969/j.issn.1673-1212.2012.01.039
|
[2] |
张宇. 浅析大气污染现状及防治措施[J]. 清洗世界, 2021, 37(7): 90-91.
ZHANG Yu. Analysis on the present situation of air pollution and its prevention measures[J]. Cleaning World, 2021, 37(7): 90-91.
|
[3] |
张玉杰. 中国二氧化硫排放情况及其对环境的影响(待续)[J]. 硫磷设计与粉体工程, 2021(4): 30-35.
ZHANG Yujie. Sulfur dioxide emission in China and its impact on the environment (to be continued)[J]. Sulfur and Phosphorus Design and Powder Engineering, 2021(4): 30-35.
|
[4] |
张玉杰. 中国二氧化硫排放情况及其对环境的影响(续完)[J]. 硫磷设计与粉体工程, 2021(5): 43-48.
ZHANG Yujie. Sulfur dioxide emission in China and its impact on the environment [J]. Sulfur and Phosphorus Design and Powder Engineering, 2021 (5): 43-48.
|
[5] |
杜晓峰. 大气污染原因和环境监测治理技术研究[J]. 科技与创新, 2020(23): 135-136.
DU Xiaofeng. Study on air pollution causes and environmental monitoring and control technology[J]. Science and Technology and Innovation, 2020(23): 135-136.
|
[6] |
吴淑枞, 陈祖云. 工业废气中二氧化硫的治理[J]. 当代化工研究, 2022(13): 58-60. doi: 10.3969/j.issn.1672-8114.2022.13.021
WU Shucong, CHEN Zuyun. Treatment of sulfur dioxide in industrial waste gas[J]. Contemporary Chemical Research, 2022(13): 58-60. doi: 10.3969/j.issn.1672-8114.2022.13.021
|
[7] |
DALTON M P, WATSON I M, NADEAU P A, et al. Assessment of the UV camera sulfur dioxide retrieval for point source plumes[J]. Journal of Volcanology and Geothermal Research, 2009, 188(4): 358-366. doi: 10.1016/j.jvolgeores.2009.09.013
|
[8] |
严韦, 任鑫, 刘建军, 等. 嫦娥三号极紫外相机几何定位方法及其应用[J]. 光子学报, 2016, 45(7): 119-124.
YAN Wei, REN Xin, LIU Jianjun, et al. Geometric positioning method of Chang'e-3 extreme ultraviolet camera and its application[J]. Acta Photonica Sinica, 2016, 45(7): 119-124.
|
[9] |
张英华, 李昂, 谢品华, 等. 污染气体浓度二维空间分布的紫外成像方法[J]. 光谱学与光谱分析, 2018, 38(5): 1476-1480.
ZHANG Yinghua, LI Ang, XIE Pinhua, et al. Ultraviolet imaging method of two-dimensional spatial distribution of pollution gas concentration[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1476-1480.
|
[10] |
VARNAM M, BURTON M, ESSE B, et al. Two independent light dilution corrections for the SO2 camera retrieve comparable emission rates at masaya volcano, nicaragua[J]. Remote Sensing, 2021, 13(5): 935. doi: 10.3390/rs13050935
|
[11] |
段为民, 熊远辉, 陈振威, 等. 工业 SO2及碳黑颗粒紫外成像遥感监测技术[J]. 光子学报, 2020, 49(4): 153-161.
DUAN Weimin, XIONG Yuanhui, CHEN Zhenwei, et al. Remote sensing monitoring technology of industrial SO2 and carbon black particles by ultraviolet imaging[J]. Acta Photonica Sinica, 2020, 49(4): 153-161.
|
[12] |
熊远辉, 罗中杰, 陈振威, 等. SO2气体排放的紫外成像遥感监测[J]. 光谱学与光谱分析, 2020, 40(4): 1289-1296.
XIONG Yuanhui, LUO Zhongjie, CHEN Zhenwei, et al. Monitoring SO2 emission by ultraviolet imaging remote sensing[J]. Spectroscopy and Spectral Analysis, 2020, 40(4): 1289-1296.
|
[13] |
李世江. 8 mm~32 mm 双波段变焦安防镜头设计[D]. 西安: 西安工业大学, 2022.
LI Shijiang. Design of 8 mm~32 mm dual-band zoom security lens[D]. Xi'an: Xi'an University of Technology, 2022.
|
[14] |
高子英. 大口径变焦投影系统结构设计[D]. 长春: 长春理工大学, 2017.
GAO Ziying. Structural design of large-aperture zoom projection system [D]. Changchun: Changchun Univer-sity of Science and Technology, 2017.
|
[15] |
宋鹏飞. 10 倍变焦距镜头设计[D]. 长春: 长春理工大学, 2022.
SONG Pengfei. Design of 10x zoom lens[D]. Changchun: Changchun University of Science and Technology, 2022.
|
[16] |
曾振煌, 林峰. 30 mm~110 mm大孔径红外变焦热像镜头设计[J]. 应用光学, 2016, 37(5): 752-758.
ZENG Zhenhuang, LIN Feng. Design of 30 mm~110 mm large aperture infrared zoom thermal image lens[J]. Journal of Applied Optics, 2016, 37(5): 752-758.
|
[17] |
罗锐, 梁秀玲. 大孔径宽光谱变焦镜头设计[J]. 应用光学, 2022, 43(5): 839-845. doi: 10.5768/JAO202243.0501002
LUO Rui, LIANG Xiuling. Design of large aperture and wide spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. doi: 10.5768/JAO202243.0501002
|
[1] | LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002 |
[2] | HAN Xing, RUI Tao, YU Shuangshuang, ZHANG Zhen, ZHANG Chenzhong. Design of cooled MWIR continuous zooming optical system with high zoom ratio[J]. Journal of Applied Optics, 2019, 40(6): 998-1003. DOI: 10.5768/JAO201940.0601011 |
[3] | GU Xiansong. Compact MWIR continuous zoom optical system with large zoom range[J]. Journal of Applied Optics, 2019, 40(1): 33-38. DOI: 10.5768/JAO201940.0101006 |
[4] | Wu Xuepeng, Hu Jixian. Design of continuous zoom optical system for periscope[J]. Journal of Applied Optics, 2018, 39(2): 192-195. DOI: 10.5768/JAO201839.0201006 |
[5] | Cui En-kun, Zhang Bao, Hong Yong-feng. Design of initial structure of infrared zoom optical system with PW solution[J]. Journal of Applied Optics, 2014, 35(4): 586-591. |
[6] | GE Jing-jing, LIN Zhao-rong, ZHU Da-kai. Design of mid-wave infrared continuous zoom system[J]. Journal of Applied Optics, 2013, 34(5): 728-732. |
[7] | ZHANG Liang, LIU Hong-xia. Optical design of uncooled high zoom ratio continuous-zoom lens[J]. Journal of Applied Optics, 2012, 33(2): 250-254. |
[8] | HU Ji-xian, HU Feng. Design of miniaturization for fog transmission zoom lens[J]. Journal of Applied Optics, 2009, 30(4): 547-551. |
[9] | ZHAI Xue-feng, DONG Xiao-na, WANG Guo-fu, CHEN Liang-yi. Design of underwater zoom lens[J]. Journal of Applied Optics, 2007, 28(4): 416-420. |
[10] | ZHAO Cun-hua. Design of a zoom lens system with matrix method[J]. Journal of Applied Optics, 2007, 28(3): 284-287. |