Citation: | YI Hengyu, SUO Xingwen, YI Xinyi, QI Yu. Development analysis of American directed energy maneuver short-range air defense program[J]. Journal of Applied Optics, 2024, 45(3): 485-494. DOI: 10.5768/JAO202445.0310001 |
American directed energy maneuver-short range air defense (DE M-SHORAD) program provides air protection to the maneuvering forces by defeating, destroying, or neutralizing rotary-wing unmanned aircraft systems (UAS), fixed-wing UAS, and rockets, artillery and mortar (RAM) threats, which is one of the priorities of the army air defense and anti-missile modernization. Firstly, the development program of DE M-SHORAD system was introduced. Then, its system architecture was analyzed in detail, and the combat performance was deduced from the system parameters. Finally, the development progress of the system was reviewed. Through the comprehensive analysis, it was showed that the DE M-SHORAD system adopted the optimal components for the integration of laser weapon systems on armored vehicles through a rapid prototyping approach. In order to mitigate the technical risks, the development approach of this program was divided into two phases, first integrating and testing the 2 kW~5 kW mobile experimental high-energy laser (MEHEL), and then developing the 50 kW multi-mission high-energy laser (MMHEL). The calculation results show that the maximum range of MEHEL and MMHEL for UAS is about 0.77 km and 4.8 km, respectively.
[1] |
刘晓明, 葛悦涛. 美国陆军首次成功试验车载激光武器拦截迫击炮弹和无人机[J]. 飞航导弹,2014(2):12.
LIU Xiaoming, GE Yuetao. The US army has successfully tested its first vehicle-borne laser weapon to intercept mortar shells and drones[J]. Aerodynamic Missile Journal,2014(2):12.
|
[2] |
任国光, 伊炜伟, 屈长虹. 高功率光纤激光器及其在战术激光武器中的应用[J]. 激光与红外,2015,45(10):1145-1151.
REN Guoguang, YI Weiwei, QU Changhong, et al. High- power fiber lasers and their applications in tactical laser weapons[J]. Laser & Infrared,2015,45(10):1145-1151.
|
[3] |
程勇, 郭延龙, 唐璜, 等. 战术激光武器的发展动向[J]. 激光与光电子学进展, 2016, 53: 110004-1-11.
CHENG Yong, GUO Yanlong, TANG Huang, et al. Development trend of tactical laser weapons[J]. Laser & Optoelectronics Progress, 2016, 53: 110004-1-11.
|
[4] |
李朝龙, 李明辉, 陈玉华. 激光武器在陆军全域作战中的运用[J]. 激光与红外,2020,50(5):515-520.
LI Chaolong, LI Minghui, CHEN Yuhua. The application of laser weapon in the army's whole area operation[J]. Laser & Infrared,2020,50(5):515-520.
|
[5] |
丁宇, 杨军, 郑荣山, 等. 俄罗斯“佩列斯韦特”激光武器系统深度解析[J]. 光电技术应用,2020,35(5):6-12.
DING Yu, YANG Jun, ZHENG Rongshan, et al. Analysis of Peresvet laser weapon system in Russian in-depth[J]. Electro-optic Technology Application,2020,35(5):6-12.
|
[6] |
黄沛, 曹国辉, 张海晶, 等. 美国陆军车载战术激光武器发展分析[J]. 激光技术,2022,46(6):817-822.
HUANG Pei, CAO Guohui, ZHANG Haijing, et al. Development analysis of US army vehicle tactical laser weapons[J]. Laser Technology,2022,46(6):817-822.
|
[7] |
梓文. 2017 年美国陆军车辆可能配装激光武器[J]. 兵器材料科学与工程,2017,40(1):118.
ZI Wen. US army vehicles could be fitted with laser weapons in 2017[J]. Ordnance Material Science and Engineering,2017,40(1):118.
|
[8] |
ESHEL T. Lifting the veil of Israel's classified laser weapon program[EB/OL]. (2020-01-08)[2023-08-25]. https://defense-update.com/20200108_hel_israel.html.
|
[9] |
SYDNEY J, FREEDBERG J R. Drone-killing laser stars in army field test[EB/OL]. (2017-05-11)[2023-08-25]. http://breakingdefense.com/2017/05.
|
[10] |
OSBORN K. Fast-developing high energy laser weapons are increasingly able to expand the attack envelope for army ground units facing enemy air attacks[EB/OL]. (2023-2-1)[2023-08-25]. https://warriormaven.com/land/ army-strykers-drones-laser-directed-energy-maneuver-short-range-air-defensee.
|
[11] |
易亨瑜, 齐予, 黄吉金. 舰载激光武器的研制进展[J]. 激光技术,2015,39(6):834-939.
YI Hengyu, QI Yu, HUANG Jijin. Development of ship-based laser weapons system[J]. Laser Technology,2015,39(6):834-939.
|
[12] |
PRIGG M. Watch Boeing test radical new 'silent strike' laser weapon small enough to fit in a suitcase but powerful enough to blast a drone out of the air[EB/OL]. (2015-08-27)[2023-08-25]. http://www.dailymail.co.uk/sciencetech/article-3213365.
|
[13] |
GAIL O. IPG photonics offers world's first 10 kW single-mode production laser[EB/OL]. (2009-06-17) [2014-10-11]. http://www.laserfocusworld.com/articles/2009/06.
|
[14] |
RUDOLF P, JÜRGEN Z, FRANZ G, et al. High-power beam combining-a step to a future laser weapon sys-tem[J]. SPIE, 8547: 854708.
|
[15] |
AFZALL R S, HONEA E, MATTHIAS S L, et al. Spectrally beam combined fiber lasers for high power, efficiency and brightness[J]. SPIE, 8547: 854706.
|
[16] |
IPG's high power CW fiber lasers[EB/OL]. (2023-08-11)[2023-8-25]. https://www.ipgphotonics.com/en/produ-cts/lasers.
|
[17] |
BILL S. High power fiber laser technology [EB/OL]. (2013-09-10) [2013-10-11]. http:///www.ipgphotonics.com.
|
[18] |
THOMAS N. First laser weapon for a fighter delivered to the air force[EB/OL]. (2022-7-11)[2023-8-25]. https:// www.thedrive.com/the-war-zone.
|
[19] |
THOMAS C. Lockheed martin demos 50 kW anti-aircraft frickin' laser beam[EB/OL]. (2023-1-26)[2023-8-25]. https://www.theregister.com/2023/01/26/lockheed_martin_lights_up_50kw.
|
[20] |
STUDI O. Raytheon technologies powers Japan's defence upgrade with innovative counter-strike and air dominance solutions[EB/OL]. (2023-03-13)[2023-08-25]. https://https://www.shephardmedia.com/news/air-warfare.
|
[21] |
王辉华. 固态激光武器系统指标设计与分析[J]. 海军航空工程学院学报,2016,31(5):573-578.
WANG Huihua. Index design and analysis of solid state laser weapon systems[J]. Journal of Naval Aeronautical and Astronautical University,2016,31(5):573-578.
|
[22] |
王贵兵, 刘仓理. 凯芙拉环氧复合材料烧蚀阈值实验研究[J]. 激光技术,2003,27(5):457-459.
WANG Guibin, LIU Cangli. Experimental research of the ablation threshold of Kevlar /epoxy[J]. Laser Technolo-gy,2003,27(5):457-459.
|
[23] |
郭亚林, 梁国正, 丘哲明, 等. 激光参数对碳纤维复合材料质量烧蚀率的影响[J]. 复合材料学报,2006,23(5):84-88. doi: 10.3321/j.issn:1000-3851.2006.05.016
GUO Yalin, LIANG Guozheng, QIU Zhemin, et al. Effect of laser parameters on mass ablative rate of carbon fiber reinforced composite[J]. Acta Materiae Compositiae Sinica,2006,23(5):84-88. doi: 10.3321/j.issn:1000-3851.2006.05.016
|
[24] |
JEN J. Army short-range air defense laser prototypes take down drones at Yuma[EB/OL]. (2023-04-14)[2023-8-25]. https://www.defensenews.com/land/2023/04/13.
|
[25] |
RAJESH U. Laser beam combining technologies are enabling high power laser directed energy weapons on trucks, warships and airplanes[EB/OL]. (2019-6-27)[2023-8-25]. https://idstch.com/technology/photonics.
|
[26] |
易亨瑜, 苏毅, 黄珊, 等. 矩形光束合成的建模与实验验证[J]. 红外与激光工程,2011,40(3):472-475.
YI Hengyu, SU Yi, HUANG Shan, et al. Modeling and experimental validating on array combination of rectangle laser beams[J]. Infrared and Laser Engineering,2011,40(3):472-475.
|
[27] |
易亨瑜, 苏毅, 唐淳, 等. 矩形光斑阵列合束的锁相闭环分析[J]. 中国激光,2010,37(5):1253-1258. doi: 10.3788/CJL20103705.1253
YI Hengyu, SU Yi, TANG Chun, et al. Coherent combination analyses of rectangle spot beams array with phase-locked closing-loop[J]. Chinese Journal of Lasers,2010,37(5):1253-1258. doi: 10.3788/CJL20103705.1253
|
[28] |
易亨瑜, 齐予, 宋伟, 等. 子束排列方式对固体激光器光束合成特性的影响[J]. 强激光与粒子束,2011,23(7):1735-1740. doi: 10.3788/HPLPB20112307.1735
YI Hengyu, QI Yu, SONG Wei, et al. Effect of beamlets arrange on beam combination characteristics of solid-state laser[J]. High Power Laser and Particle Beams,2011,23(7):1735-1740. doi: 10.3788/HPLPB20112307.1735
|
[29] |
TREVITHICK J. The US army's laser-armed stryker has blasted dozens of drones[EB/OL]. (2017-04-17)[2023-08-25]. http://www.thedrive.com/the-war-zone/9345.
|
[30] |
US Army. Groundbreaking laser prototype systems delivered to 4th-60th air defense artillery regiment[EB/OL]. (2023-09-21)[2023-11-20]. https://www.defense-aerospace.com/prototype-laser-air-defense-weapons-delivered-to-us-army.
|
[1] | MO Yuxiao, ZHOU Ziye, FAN Chenguang, YANG Yujing, TIAN Zhen. Modal testing and kinetic finite element correction of mirror assemblies for co-phase devices[J]. Journal of Applied Optics, 2024, 45(6): 1147-1157. DOI: 10.5768/JAO202445.0601006 |
[2] | DAI Jinqi, YU Hailong, WANG Junguang, GAO Xun. Influence of laser energy density on thermal stress at photosensitive layer of CMOS detector[J]. Journal of Applied Optics, 2024, 45(3): 568-574. DOI: 10.5768/JAO202445.0310011 |
[3] | XING Minghui, LI Jianjun, ZHAI Wenchao, TANG Qi, ZHENG Xiaobing. Design of support structure for small caliber off-axis parabolic reflector based on finite element analysis[J]. Journal of Applied Optics, 2019, 40(6): 1160-1166. DOI: 10.5768/JAO201940.0605004 |
[4] | HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004 |
[5] | Song Dong-sheng, Yang Yuan-cheng, Gao Ya, Wang Jing, Bu Zhong-hong. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4): 497-502. DOI: 10.5768/JAO201536.0401001 |
[6] | ZHANG Ming-hui, LIU Yuan-zheng, LAN Pei-feng, ZHANG Zhen-rong. Structural finite element analysis of path length control mirror forlaser gyroscopes[J]. Journal of Applied Optics, 2011, 32(2): 353-357. |
[7] | LIU Quan-xi, ZHONG Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640. |
[8] | LI Yu-tao, QU Xiao-chi, ZHANG Tian-xiao. Finite element analysis of IR optical system based on ANSYS[J]. Journal of Applied Optics, 2008, 29(2): 174-177. |
[9] | ZHAO Shi-bin, ZHAO Jia, ZHANG Cun-lin, DING You-fu, LI Yan-hong. Finite element simulation and analysis for type identification of defects under material surfaces in infrared thermal wave nondestructive detection[J]. Journal of Applied Optics, 2007, 28(5): 559-563. |
[10] | LIU Quan-xi, QI Wen-zong, HAO Qiu-long, ZHAO Fang-dong. Finite element analysis of thermal effect of photovoltaic detector irradiated by laser[J]. Journal of Applied Optics, 2007, 28(3): 275-279. |
1. |
朱纬,王敏林,董雪明. 基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术. 电子测量技术. 2024(08): 189-194 .
![]() | |
2. |
张东波,汪立新,李灿. 光纤环多极对称绕法对Shupe误差抑制效果仿真分析. 北京航空航天大学学报. 2023(07): 1715-1721 .
![]() | |
3. |
王刚,万洵,崔志超,谢良平. 基于动态温控的光纤陀螺高温工作控制方案. 应用光学. 2023(05): 1153-1156 .
![]() | |
4. |
吴雨萌,胡斌,毕聪志,孙桂林,雷明. 光纤环非互易相位误差尾纤补偿方法研究. 导航定位与授时. 2022(04): 149-155 .
![]() | |
5. |
周闻青,费宇明,洪桂杰,应光耀,叶欣. 高精度光纤陀螺零位误差的磁温特性研究. 应用光学. 2020(01): 220-227 .
![]() | |
6. |
黄迟航,王斌华,胡桥,孔军,陈平. 陀螺光纤内的光纤环胶接固定方式分析. 机械研究与应用. 2020(06): 64-66+70 .
![]() |