WU Mengxue, QIAN Yunsheng, WANG Luzi, YANG Shuning, ZHANG Qin. Test method for halo disappearance time of low-level-light image intensifier[J]. Journal of Applied Optics, 2024, 45(3): 652-658. DOI: 10.5768/JAO202445.0304001
Citation: WU Mengxue, QIAN Yunsheng, WANG Luzi, YANG Shuning, ZHANG Qin. Test method for halo disappearance time of low-level-light image intensifier[J]. Journal of Applied Optics, 2024, 45(3): 652-658. DOI: 10.5768/JAO202445.0304001

Test method for halo disappearance time of low-level-light image intensifier

More Information
  • Received Date: May 16, 2023
  • Revised Date: July 30, 2023
  • Available Online: March 06, 2024
  • The halo effect has a negative impact on the application of detection of low-level-light image intensifier, and it is unavoidable. The method for testing the halo disappearance time of low-level-light image intensifier is lacking. To address this, a halo disappearance time test system based on digital vision was proposed. The system provided a pulse signal with a frequency of 25 Hz and an adjustable duty cycle to the LED light source through a switching power supply. 1 500 images of the image intensifier passing through a small hole with a diameter of 3.5 mm were captured by a high frame rate camera, including several complete light and dark cycles. The period information was optimized by repeatedly calculating the standard deviation to remove the periodic sequence that deviated from the average value, and the image index where the light source was turned off in the light and dark period was obtained. Similarly, the number of pictures where the halo disappeared could be obtained, thereby calculating the disappearance time of the halo. The halo disappearance time of image intensifier is 3.33 ms with the serial number GZ318118A. The test results show that the repeatability of the measuring device is 0.863%, which can effectively test the disappearance time of the halo.

  • [1]
    李晓峰, 何雁彬, 常乐, 等. 超二代与三代像增强器性能的比较研究[J]. 红外技术,2022,44(8):764-777. doi: 10.11846/j.issn.1001-8891.2022.8.hwjs202208002

    LI Xiaofeng, HE Yanbin, CHANG Le, et al. Performance comparison between super second generation and third generation image intensifiers[J]. Infrared Technology,2022,44(8):764-777. doi: 10.11846/j.issn.1001-8891.2022.8.hwjs202208002
    [2]
    THOMAS P J, ALLISON R S, CARR P, et al. Physical modeling and characterization of the halo phenomenon in night vision goggles[C]//SPIE Proceedings, Helmet-and Head-Mounted Displays X: Technologies and Applications. Orlando, Florida, USA: SPIE, 2005: 21-31.
    [3]
    ZACHER J E, BRANDWOOD T, THOMAS P, et al. Effects of image intensifier halo on perceived layout[C]//SPIE Proceedings, Head-and Helmet-Mounted Displays XII: Design and Applications. Orlando, USA: SPIE, 2007: 65570U-1-65570U-12.
    [4]
    LING R, FENG S, HUI G, et al. Analysis of image intensifiers halo effect with curve fitting and separation method[C]// 2012 International Conference on Electrical and Electronics Engineering (ICEE 2012). Shanghai, China: Springer, 2012: 1109-1116.
    [5]
    吕学良. 高灵敏度长寿命防光晕阴极玻璃窗及批产技术[J]. 中国建材,2016,65(8):80-81.

    LYU Xueliang. High-sensitivity and long-life halo-proof cathode glass window and batch production technology[J]. China Building Materials,2016,65(8):80-81.
    [6]
    卢杰, 常乐, 陈益新, 等. 微光像增强器纳秒级荧光屏余辉时间测试系统[J]. 应用光学,2022,43(6):1130-1137. doi: 10.5768/JAO202243.0604012

    LU Jie, CHANG Le, CHEN Yixin, et al. Development of afterglow time test system for nanosecond fluorescent screen of low-level-light image intensifier[J]. Journal of Applied Optics,2022,43(6):1130-1137. doi: 10.5768/JAO202243.0604012
    [7]
    王洪刚. 像增强器的电子输运与噪声特性研究[D]. 南京: 南京理工大学, 2015.

    WANG Honggang. Research on the electron transport and noise characteristics of image intensifiers[D]. Nanjing: Nanjing University of Science and Technology, 2015.
    [8]
    郭冰涛, 张卫国, 王健军, 等. 微光夜视系统光晕效应定量表征与建模方法[J]. 强激光与粒子束,2016,28(11):119001. doi: 10.11884/HPLPB201628.160081

    GUO Bingtao, ZHANG Weiguo, WANG Jianjun, et al. Modeling and simulation of halo effect of night vision system[J]. High Power Laser and Particle Beams,2016,28(11):119001. doi: 10.11884/HPLPB201628.160081
    [9]
    CHRISTOPHE P B. Switch-mode power supplies[M]. New York: McGraw-Hill Education, 2014: 2-3.
    [10]
    朱世聪, 李金沙, 王俊, 等. 一种微光像增强器信噪比和光晕自动测试系统及测试方法: CN113432838B[P]. 2022-08-09.

    ZHU Shicong, LI Jinsha, WANG Jun, et al. System and method for automatically testing signal-to-noise ratio and halo of low-light image intensifier: CN113432838B[P]. 2022-08-09
    [11]
    CUI D X, REN L, CHANG B K, et al. Halo performance on low light level image intensifiers[C]//SPIE Proceedings, PIAGENG 2013: Image Processing and Photonics for Agricultural Engineering. Sanya, China: SPIE, 2013: 876108-1-5.
    [12]
    GU Y R, LU Y F, YANG H G, et al. Concentric circle detection method based on minimum enveloping circle and ellipse fitting[C]//2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS). Beijing, China: IEEE, 2019: 523-527.
    [13]
    钟华勇, 叶建生, 何高清. 基于OpenCV的圆心坐标定位的优化设计[J]. 制造技术与机床,2021(5):110-115.

    ZHONG Huayong, YE Jiansheng, HE Gaoqing. Optimization design of center coordinates location based on OpenCV[J]. Manufacturing Technology & Machine Tool,2021(5):110-115.
    [14]
    郝拉娣, 于化东. 标准差与标准误[J]. 编辑学报,2005,17(2):116-118. doi: 10.3969/j.issn.1001-4314.2005.02.017

    HAO Ladi, YU Huadong. Standard deviation and standard error of arithmetic mean[J]. Acta Editologica,2005,17(2):116-118. doi: 10.3969/j.issn.1001-4314.2005.02.017
    [15]
    MOLINA-GÓMEZ F, BULLA-CRUZ L A, DARGHAN CONTRERAS A E. A novel approach for the control of grain size distributions based on variance analysis[J]. Construction and Building Materials,2021,285:122748. doi: 10.1016/j.conbuildmat.2021.122748
    [16]
    王璐子, 钱芸生, 孙默涵, 等. 基于条纹变化特征的像增强器分辨力客观评价[J]. 光子学报,2022,51(3):0304003. doi: 10.3788/gzxb20225103.0304003

    WANG Luzi, QIAN Yunsheng, SUN Mohan, et al. Objective evaluation of the resolution of image intensifier based on stripe variation features[J]. Acta Photonica Sinica,2022,51(3):0304003. doi: 10.3788/gzxb20225103.0304003
  • Related Articles

    [1]LI Chao, ZHANG Yuguo, LIU Baowei, CAO Jing, GUO Yapin, WANG Jiapeng. Research on technology of large area blackbody radiation source used in field calibration for target radiation characteristics[J]. Journal of Applied Optics, 2021, 42(2): 292-298. DOI: 10.5768/JAO202142.0203001
    [2]CAO Pan, XU Shijun, SHI Xiaohong, YUAN Liang, ZHAN Chunlian. Research on spatial uniformity test of grating imaging spectrometer[J]. Journal of Applied Optics, 2020, 41(2): 354-360. DOI: 10.5768/JAO202041.0203003
    [3]GAN Tao, YUAN Yinlin, ZHAI Wenchao, ZHENG Xiaobing, MENG Fangang, WU Haoyu. Design and test of in-site radiometric calibration reference light source for spaceborne low light level remote sensors[J]. Journal of Applied Optics, 2020, 41(1): 140-144. DOI: 10.5768/JAO202041.0103002
    [4]Chen Ligang, Feng Weiwei. Experimental study on multi-optical parameter imaging technology under fog and haze weather[J]. Journal of Applied Optics, 2017, 38(4): 613-616. DOI: 10.5768/JAO201738.0403002
    [5]J. A. A. Engelbrecht, G. Deyzel, E. G. Minnaar, W. E. Goosen, I. J. Van Rooyen. Assessment of neutron-irradiated 3C-SiC implanted at 800 ℃[J]. Journal of Applied Optics, 2015, 36(6): 937-941. DOI: 10.5768/JAO201536.0604001
    [6]FAN Ji-hong, ZHAO Sheng-lu, ZHAN Chun-lian, YUAN Liang, LI Zheng-qi, LU Fei, LI Yan. Absolute radiometric calibration technique of imaging spectrometer[J]. Journal of Applied Optics, 2013, 34(4): 629-632.
    [7]ZHANG Fang, GAO Jiao-bo, WANG Jun, XIAO Xiang-guo, ZHANG Lei. AAbsolute spectral radiation calibration of fiber spectrometer[J]. Journal of Applied Optics, 2011, 32(1): 101-105.
    [8]WEI Mao-jin, YANG Wei-wei, LIU De-gong. The research measuring refractive indexof medium based on reflectivity of linear polarized light[J]. Journal of Applied Optics, 2010, 31(1): 100-104.
    [9]ZHANG Xiao-ying, ZHU Ding-qiang, CAI Guo-biao. Calculation for visible radiation of midcourse target[J]. Journal of Applied Optics, 2008, 29(3): 444-447.
    [10]HONG Wen-xue, CAI Jian-hong, JING Jun. A Research on Heat Radiation Spectrum Characteristics of Moxibustion Therapy[J]. Journal of Applied Optics, 2004, 25(4): 1-3.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (87) PDF downloads (32) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return