YUAN Yuli, LYU Junrui, LUO Xuegang. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty[J]. Journal of Applied Optics, 2021, 42(2): 283-291. DOI: 10.5768/JAO202142.0202005
Citation: YUAN Yuli, LYU Junrui, LUO Xuegang. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty[J]. Journal of Applied Optics, 2021, 42(2): 283-291. DOI: 10.5768/JAO202142.0202005

Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty

More Information
  • Received Date: August 06, 2020
  • Revised Date: November 08, 2020
  • Available Online: February 23, 2021
  • To solve the loss of image details when removing the stripe noise of hyperspectral images (HSI), a destriping method for hyperspectral images was proposed, which was based on the weighted block sparsity (WBS) regularization and the minimax concave penalty (MCP) constraint (WBS-MCP). WBS-MCP was constructed by employing weighted ℓ2,1 norm and MCP norm for the sparse features and low-rank constraints, and applying ℓ1 norm to the edge smoothing constraint of clean image. The alternating direction method of multipliers (ADMM) algorithm was used to iteratively solve the corresponding constraint model, and the clean HSI image was obtained by reconstruction. The experimental results show that the mean equivalent number of look of real HSI improves from 28.45 to 83.47, and the edge retention index increased by 0.056 at least, especially for the aperiodic stripe noise. The adaptive weight was used to update the sparse level, which could enhance the group sparsity and has better performance in maintaining the image edge and enhancing the area smoothness, so that the noise removal has better effect on aperiodic stripe noise.
  • [1]
    CHENG Jinsong, SHAO Yun, GUO Huadong, et al. Destriping CMODIS data by power filtering[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2119-2124. doi: 10.1109/TGRS.2003.817206
    [2]
    TORRES J, INFANTE S O. Wavelet analysis for the elimination of striping noise in satellite images[J]. Optical Engineering,2001,40(7):1309-1314. doi: 10.1117/1.1383996
    [3]
    PANDE-CHHETRI R, ABD-ELRAHMAN A. Destriping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(5):620-636. doi: 10.1016/j.isprsjprs.2011.04.003
    [4]
    韩玲, 董连凤, 张敏, 等. 基于改进的矩匹配方法高光谱影像条带噪声滤波技术[J]. 光学学报,2009,29(12):101-106.

    HAN Ling, DONG Lianfeng, ZHANG Min, et al. Destriping hyperspectral image based on an improved moment matching method[J]. Acta Optica Sinica,2009,29(12):101-106.
    [5]
    GADALLAH F L, CSILLAG F, SMITH E J, et al. Destriping multisensor imagery with moment matching[J]. International Journal of Remote Sensing,2000,21(12):2505-2511. doi: 10.1080/01431160050030592
    [6]
    BOUALI M, LADJAL S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(8):2924-2935. doi: 10.1109/TGRS.2011.2119399
    [7]
    CHANG Y, YAN L, WU T, et al. Remote sensing image stripe noise removal: from image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(12):7018-7031. doi: 10.1109/TGRS.2016.2594080
    [8]
    孔祥阳, 彭群聂, 徐保根. 基于方向和结构特征的遥感图像条带噪声分离方法[J]. 电光与控制,2020,27(1):6-11. doi: 10.3969/j.issn.1671-637X.2020.01.002

    KONG Xiangyang, PENG Qunnie, XU Baogen. Stripes separation method for remote sensing images based on directional and structural feature[J]. Electronics Optics & Control,2020,27(1):6-11. doi: 10.3969/j.issn.1671-637X.2020.01.002
    [9]
    DOU H X, HUANG T Z, DENG L J et al. Directional ℓ0 sparse modeling for image stripe noise removal[J]. Remote Sensing,2018,10(3):361. doi: 10.3390/rs10030361
    [10]
    WANG J, HUANG T, ZHAO X, et al. Reweighted block sparsity regularization for remote sensing images destriping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(12):4951-4963. doi: 10.1109/JSTARS.2019.2940065
    [11]
    LIU N, LI W, TAO R, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(12):10310-10321. doi: 10.1109/TGRS.2019.2933555
    [12]
    YANG J, ZHAO X, MA T, et al. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization[J]. Journal of Computational and Applied Mathematics,2020,363(1):124-144.
    [13]
    FU W J. Penalized regressions: the Bridge versus the Lasso[J]. Journal of Computational and Graphical Statistics,1998,7(3):397-416.
    [14]
    ZHANG T. Analysis of multi-stage convex relaxation for sparse regularization[J]. Journal of Machine Learning Research,2010,11(2):1081-1107.
    [15]
    FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association,2001,96(456):1348-1360. doi: 10.1198/016214501753382273
    [16]
    ZHANG C. Nearly unbiased variable selection under minimax concave penalty[J]. Annals of Statistics,2010,38(2):894-942. doi: 10.1214/09-AOS729
    [17]
    YOU J, JIAO Y, LU X, et al. A nonconvex model with minimax concave penalty for image restoration[J]. Journal of Scientific Computing,2019,78(2):1063-1086. doi: 10.1007/s10915-018-0801-z
    [18]
    ZHANG L, ZHANG L, MOU X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing,2011,20(8):2378-2386. doi: 10.1109/TIP.2011.2109730
  • Related Articles

    [1]HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004
    [2]MA Dazhi, YU Binchao, ZHANG Yanze, LIU Wei, YUE Yi, YANG Jizhi, CHEN Qintao. Measurement system of large-scale high reflective component based on binocular vision[J]. Journal of Applied Optics, 2021, 42(4): 577-585. DOI: 10.5768/JAO202142.0401002
    [3]ZHU Wenjie, LING He, YANG Shoupeng. Research on compensation for positioning errors of carbody welding points based on binocular vision[J]. Journal of Applied Optics, 2021, 42(1): 79-85. DOI: 10.5768/JAO202142.0102005
    [4]CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics, 2020, 41(6): 1174-1180. DOI: 10.5768/JAO202041.0601006
    [5]HAO Renjie, WANG Zhongyu, LI Yaru. Error analysis method for monocular vision pose measurement system[J]. Journal of Applied Optics, 2019, 40(1): 79-85. DOI: 10.5768/JAO201940.0103001
    [6]Zhang Jianlong, Pan Xin, He Lei, Yang Zhen, Guo Xinmin, Kang Weimin. Error analysis of optical system for full-view and high-precision three-dimensional measuring instrument[J]. Journal of Applied Optics, 2018, 39(3): 392-399. DOI: 10.5768/JAO201839.0303004
    [7]Miao Lijun, Che Ziyuan. Visual locating of mobile robot based on adaptive down sampling[J]. Journal of Applied Optics, 2017, 38(3): 429-433. DOI: 10.5768/JAO201738.0302008
    [8]Wang Qiyue, Wang Zhongyu. Position and pose measurement of spacecraft based on monocular vision[J]. Journal of Applied Optics, 2017, 38(2): 250-255. DOI: 10.5768/JAO201738.0203001
    [9]Peng Fu-lun, Wang Jing, Wu Yi-lei, Guo Cheng. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562.
    [10]DU Jun-feng. Error budget design for photoelectric theodolite[J]. Journal of Applied Optics, 2006, 27(6): 506-509.
  • Cited by

    Periodical cited type(6)

    1. 刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
    2. 易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
    3. 杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
    4. 刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 . 本站查看
    5. 肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
    6. 肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .

    Other cited types(5)

Catalog

    Article views (902) PDF downloads (38) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return