Citation: | YUAN Yuli, LYU Junrui, LUO Xuegang. Hyperspectral images destriping approach with weighted block sparsity regularization and non-convex low-rank penalty[J]. Journal of Applied Optics, 2021, 42(2): 283-291. DOI: 10.5768/JAO202142.0202005 |
[1] |
CHENG Jinsong, SHAO Yun, GUO Huadong, et al. Destriping CMODIS data by power filtering[J]. IEEE Transactions on Geoscience and Remote Sensing,2003,41(9):2119-2124. doi: 10.1109/TGRS.2003.817206
|
[2] |
TORRES J, INFANTE S O. Wavelet analysis for the elimination of striping noise in satellite images[J]. Optical Engineering,2001,40(7):1309-1314. doi: 10.1117/1.1383996
|
[3] |
PANDE-CHHETRI R, ABD-ELRAHMAN A. Destriping hyperspectral imagery using wavelet transform and adaptive frequency domain filtering[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2011,66(5):620-636. doi: 10.1016/j.isprsjprs.2011.04.003
|
[4] |
韩玲, 董连凤, 张敏, 等. 基于改进的矩匹配方法高光谱影像条带噪声滤波技术[J]. 光学学报,2009,29(12):101-106.
HAN Ling, DONG Lianfeng, ZHANG Min, et al. Destriping hyperspectral image based on an improved moment matching method[J]. Acta Optica Sinica,2009,29(12):101-106.
|
[5] |
GADALLAH F L, CSILLAG F, SMITH E J, et al. Destriping multisensor imagery with moment matching[J]. International Journal of Remote Sensing,2000,21(12):2505-2511. doi: 10.1080/01431160050030592
|
[6] |
BOUALI M, LADJAL S. Toward optimal destriping of MODIS data using a unidirectional variational model[J]. IEEE Transactions on Geoscience and Remote Sensing,2011,49(8):2924-2935. doi: 10.1109/TGRS.2011.2119399
|
[7] |
CHANG Y, YAN L, WU T, et al. Remote sensing image stripe noise removal: from image decomposition perspective[J]. IEEE Transactions on Geoscience and Remote Sensing,2016,54(12):7018-7031. doi: 10.1109/TGRS.2016.2594080
|
[8] |
孔祥阳, 彭群聂, 徐保根. 基于方向和结构特征的遥感图像条带噪声分离方法[J]. 电光与控制,2020,27(1):6-11. doi: 10.3969/j.issn.1671-637X.2020.01.002
KONG Xiangyang, PENG Qunnie, XU Baogen. Stripes separation method for remote sensing images based on directional and structural feature[J]. Electronics Optics & Control,2020,27(1):6-11. doi: 10.3969/j.issn.1671-637X.2020.01.002
|
[9] |
DOU H X, HUANG T Z, DENG L J et al. Directional ℓ0 sparse modeling for image stripe noise removal[J]. Remote Sensing,2018,10(3):361. doi: 10.3390/rs10030361
|
[10] |
WANG J, HUANG T, ZHAO X, et al. Reweighted block sparsity regularization for remote sensing images destriping[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(12):4951-4963. doi: 10.1109/JSTARS.2019.2940065
|
[11] |
LIU N, LI W, TAO R, et al. Wavelet-domain low-rank/group-sparse destriping for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(12):10310-10321. doi: 10.1109/TGRS.2019.2933555
|
[12] |
YANG J, ZHAO X, MA T, et al. Remote sensing images destriping using unidirectional hybrid total variation and nonconvex low-rank regularization[J]. Journal of Computational and Applied Mathematics,2020,363(1):124-144.
|
[13] |
FU W J. Penalized regressions: the Bridge versus the Lasso[J]. Journal of Computational and Graphical Statistics,1998,7(3):397-416.
|
[14] |
ZHANG T. Analysis of multi-stage convex relaxation for sparse regularization[J]. Journal of Machine Learning Research,2010,11(2):1081-1107.
|
[15] |
FAN J, LI R. Variable selection via nonconcave penalized likelihood and its oracle properties[J]. Journal of the American Statistical Association,2001,96(456):1348-1360. doi: 10.1198/016214501753382273
|
[16] |
ZHANG C. Nearly unbiased variable selection under minimax concave penalty[J]. Annals of Statistics,2010,38(2):894-942. doi: 10.1214/09-AOS729
|
[17] |
YOU J, JIAO Y, LU X, et al. A nonconvex model with minimax concave penalty for image restoration[J]. Journal of Scientific Computing,2019,78(2):1063-1086. doi: 10.1007/s10915-018-0801-z
|
[18] |
ZHANG L, ZHANG L, MOU X, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing,2011,20(8):2378-2386. doi: 10.1109/TIP.2011.2109730
|
[1] | HE Sijie, DAI Caihong, CHENG Qiutong, WU Zhifeng, LI Ling, WANG Yanfei. Influence of field of view angle and positioning error on spectral radiance measurement[J]. Journal of Applied Optics, 2023, 44(2): 386-391. DOI: 10.5768/JAO202344.0203004 |
[2] | MA Dazhi, YU Binchao, ZHANG Yanze, LIU Wei, YUE Yi, YANG Jizhi, CHEN Qintao. Measurement system of large-scale high reflective component based on binocular vision[J]. Journal of Applied Optics, 2021, 42(4): 577-585. DOI: 10.5768/JAO202142.0401002 |
[3] | ZHU Wenjie, LING He, YANG Shoupeng. Research on compensation for positioning errors of carbody welding points based on binocular vision[J]. Journal of Applied Optics, 2021, 42(1): 79-85. DOI: 10.5768/JAO202142.0102005 |
[4] | CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics, 2020, 41(6): 1174-1180. DOI: 10.5768/JAO202041.0601006 |
[5] | HAO Renjie, WANG Zhongyu, LI Yaru. Error analysis method for monocular vision pose measurement system[J]. Journal of Applied Optics, 2019, 40(1): 79-85. DOI: 10.5768/JAO201940.0103001 |
[6] | Zhang Jianlong, Pan Xin, He Lei, Yang Zhen, Guo Xinmin, Kang Weimin. Error analysis of optical system for full-view and high-precision three-dimensional measuring instrument[J]. Journal of Applied Optics, 2018, 39(3): 392-399. DOI: 10.5768/JAO201839.0303004 |
[7] | Miao Lijun, Che Ziyuan. Visual locating of mobile robot based on adaptive down sampling[J]. Journal of Applied Optics, 2017, 38(3): 429-433. DOI: 10.5768/JAO201738.0302008 |
[8] | Wang Qiyue, Wang Zhongyu. Position and pose measurement of spacecraft based on monocular vision[J]. Journal of Applied Optics, 2017, 38(2): 250-255. DOI: 10.5768/JAO201738.0203001 |
[9] | Peng Fu-lun, Wang Jing, Wu Yi-lei, Guo Cheng. Object positioning and error analysis of vehicular electro-optical reconnaissance system[J]. Journal of Applied Optics, 2014, 35(4): 557-562. |
[10] | DU Jun-feng. Error budget design for photoelectric theodolite[J]. Journal of Applied Optics, 2006, 27(6): 506-509. |
1. |
刘维慧,梁润泽,赵泉昕,卓朝博,苗永平. 双光源干涉法测量液态薄膜厚度. 大学物理实验. 2024(01): 31-36 .
![]() | |
2. |
易进,张瑞,薛鹏,卜韩,王志斌,李孟委. 基于弹光调制的椭偏测量驱动电路系统设计. 电子设计工程. 2024(04): 32-36+42 .
![]() | |
3. |
杨楠卓,欧阳名钊,周维虎,陈晓梅. 基于光谱反射技术的梯形刻面MEMS高深宽比沟槽深度测量仿真分析. 长春理工大学学报(自然科学版). 2020(02): 48-52+114 .
![]() | |
4. |
刘学聪,苗昕扬,詹洪磊,朱明达,张善哲,赵昆. 基于激光感生电压技术的咖啡粉粒径检测. 应用光学. 2020(05): 1117-1121 .
![]() | |
5. |
肖平平,王霏,邓满兰. 基于金属包覆波导结构的纳米间隙测量研究. 激光与光电子学进展. 2020(21): 273-277 .
![]() | |
6. |
肖平平,王霏,邓满兰,胡红武. 基于LSPR的非贵金属纳米薄膜厚度的精确测量. 光电子·激光. 2019(12): 1286-1290 .
![]() |