Citation: | HUANG Pei, YUAN Hao, XIA Yufeng, CAO Huabao, WANG Xianglin, WANG Hushan, XU Peng, HOU Xun, FU Yuxi. Research progress of ultra-short laser pulse characterization[J]. Journal of Applied Optics, 2023, 44(6): 1157-1166. DOI: 10.5768/JAO202344.0610001 |
As an essential tool for generating attosecond lasers and exploring the microcosmic world of materials, the precise measurement of the temporal profile of ultra-short laser pulses is significant. Several methods for the generation of few-cycle laser pulses and widely employed characterization techniques were reviewed. The characterization techniques were generally classified into two major categories: frequency domain and time domain measurement. In the frequency domain, the envelope and phase of ultra-short pulses were reconstructed through the measurement of the spectral information generated by nonlinear processes. In the time domain, the temporal profile of the pulse was obtained by directly sampling the optical field information using the ultrafast gate. These two types of techniques have distinct emphases in different application scenarios. The frequency domain measurement is widely employed in fast characterization experiments due to its simplicity and convenience, while the time domain sampling is commonly used in ultrafast physics experiments that are directly associated with the optical field, as it allows for the direct acquisition of photoelectric field information.
[1] |
HENTSCHEL M, KIENBERGER R, SPIELMANN C, et al. Attosecond metrology[J]. Nature,2001,414(6863):509-513. doi: 10.1038/35107000
|
[2] |
XUE B, TAMARU Y, FU Y X, et al. A custom-tailored multi-TW optical electric field for gigawatt soft-X-ray isolated attosecond pulses[J]. Ultrafast Science,2021,2021:9828026.
|
[3] |
ZHAN M J, YE P, TENG H, et al. Generation and measurement of isolated 160-attosecond XUV laser pulses at 82 eV[J]. Chinese Physics Letters,2013,30(9):093201. doi: 10.1088/0256-307X/30/9/093201
|
[4] |
王向林, 徐鹏, 李捷, 等. 利用自研阿秒条纹相机测得159 as孤立阿秒脉冲[J]. 中国激光,2020,47(4):321-324.
WANG Xianglin, XU Peng, LI Jie, et al. Isolated attosecond pulse with 159 as duration measured by home built attosecond streaking camera[J]. Chinese Journal of Lasers,2020,47(4):321-324.
|
[5] |
LI W, ZHOU X B, LOCK R, et al. Time-resolved dynamics in N2O4 probed using high harmonic generation[J]. Science,2008,322(5905):1207-1211. doi: 10.1126/science.1163077
|
[6] |
LAKHOTIA H, KIM H Y, ZHAN M, et al. Laser picoscopy of valence electrons in solids[J]. Nature,2020,583(7814):55-59. doi: 10.1038/s41586-020-2429-z
|
[7] |
GARG M, ZHAN M, LUU T T, et al. Multi-petahertz electronic metrology[J]. Nature,2016,538(7625):359-363. doi: 10.1038/nature19821
|
[8] |
SIEGRIST F, GESSNER J A, OSSIANDER M, et al. Light-wave dynamic control of magnetism[J]. Nature,2019,571(7764):240-244. doi: 10.1038/s41586-019-1333-x
|
[9] |
GUO Z N, GE P P, FANG Y Q, et al. Probing molecular frame Wigner time delay and electron wavepacket phase structure of CO molecule[J]. Ultrafast Science,2022,2022:9802917.
|
[10] |
NISOLI M, DE SILVESTRI S, SVELTO O. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters,1996,68(20):2793-2795. doi: 10.1063/1.116609
|
[11] |
LU C H, TSOU Y J, CHEN H Y, et al. Generation of intense supercontinuum in condensed media[J]. Optica,2014,1(6):400. doi: 10.1364/OPTICA.1.000400
|
[12] |
CERULLO G, DE SILVESTRI S. Ultrafast optical parametric amplifiers[J]. Review of Scientific Instruments,2003,74(1):1-18. doi: 10.1063/1.1523642
|
[13] |
WIRTH A, HASSAN M T, GRGURAŠ I, et al. Synthesized light transients[J]. Science,2011,334(6053):195-200. doi: 10.1126/science.1210268
|
[14] |
SALA K, KENNEY-WALLACE G, HALL G. CW autocorrelation measurements of picosecond laser pulses[J]. IEEE Journal of Quantum Electronics,1980,16(9):990-996. doi: 10.1109/JQE.1980.1070606
|
[15] |
DIELS J C M, FONTAINE J J, MCMICHAEL I C, et al. Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy[J]. Applied Optics,1985,24(9):1270-1282. doi: 10.1364/AO.24.001270
|
[16] |
KANE D J, TREBINO R. Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating[J]. IEEE Journal of Quantum Electronics,1993,29(2):571-579. doi: 10.1109/3.199311
|
[17] |
IACONIS C, WALMSLEY I A. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses[J]. Optics Letters,1998,23(10):792-794. doi: 10.1364/OL.23.000792
|
[18] |
ITATANI J, QUÉRÉ F, YUDIN G L, et al. Attosecond streak camera[J]. Physical Review Letters,2002,88(17):173903. doi: 10.1103/PhysRevLett.88.173903
|
[19] |
PARK S B, KIM K, CHO W, et al. Direct sampling of a light wave in air[J]. Optica,2018,5(4):402. doi: 10.1364/OPTICA.5.000402
|
[20] |
HUANG P, YUAN H, CAO H B, et al. All-optical sampling of ultrashort laser pulses based on perturbed transient grating[J]. Optics Letters,2022,47(20):5369-5372. doi: 10.1364/OL.473294
|
[21] |
HUANG P, YUAN H, CAO H B, et al. Direct sampling of ultrashort laser pulses using third-harmonic generation with perturbation in ambient air[J]. Optics Letters,2023,48(8):2154-2157. doi: 10.1364/OL.485665
|
[22] |
SCHENKEL B, BIEGERT J, KELLER U, et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum[J]. Optics Letters,2003,28(20):1987-1989. doi: 10.1364/OL.28.001987
|
[23] |
MATSUBARA E, YAMANE K, SEKIKAWA T, et al. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber[J]. JOSA B,2007,24(4):985-989. doi: 10.1364/JOSAB.24.000985
|
[24] |
SUDA A, HATAYAMA M, NAGASAKA K, et al. Generation of sub-10-fs, 5-mJ-optical pulses using a hollow fiber with a pressure gradient[J]. Applied Physics Letters,2005,86(11):111116. doi: 10.1063/1.1883706
|
[25] |
BOHMAN S, SUDA A, KANAI T, et al. Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow-fiber pulse compression[J]. Optics Letters,2010,35(11):1887-1889. doi: 10.1364/OL.35.001887
|
[26] |
NAGY T, FORSTER M, SIMON P. Flexible hollow fiber for pulse compressors[J]. Applied Optics,2008,47(18):3264-3268. doi: 10.1364/AO.47.003264
|
[27] |
BEETAR J E, NRISIMHAMURTY M, TRUONG T C, et al. Multioctave supercontinuum generation and frequency conversion based on rotational nonlinearity[J]. Science Advances,2020,6(34):eabb5375. doi: 10.1126/sciadv.abb5375
|
[28] |
TRAVERS J C, GRIGOROVA T F, BRAHMS C, et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres[J]. Nature Photonics,2019,13(8):547-554. doi: 10.1038/s41566-019-0416-4
|
[29] |
WANG Z Y, HEUERMANN T, JENA H I, et al. Nonlinear pulse compression to sub-two-cycle, 1.3 mJ pulses at 1.9 μm wavelength with 132 W average power[J]. Optics Letters,2023,48(10):2647. doi: 10.1364/OL.487587
|
[30] |
HASSAN M T, LUU T T, MOULET A, et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons[J]. Nature,2016,530(7588):66-70. doi: 10.1038/nature16528
|
[31] |
TRUONG T C, BEETAR J E, CHINI M. Light-field synthesizer based on multidimensional solitary states in hollow-core fibers[J]. Optics Letters,2023,48(9):2397-2400. doi: 10.1364/OL.487607
|
[32] |
SCHIBLI T R, KIM J, KUZUCU O, et al. Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation[J]. Optics Letters,2003,28(11):947-949. doi: 10.1364/OL.28.000947
|
[33] |
HUANG P, FANG S B, GAO Y T, et al. Simple method for simultaneous long-term stabilization of relative timing and carrier-envelope phase in waveform synthesis[J]. Applied Physics Letters,2019,115(3):031102. doi: 10.1063/1.5083239
|
[34] |
HUANG P C, HERNÁNDEZ-GARCÍA C, HUANG J T, et al. Polarization control of isolated high-harmonic pulses[J]. Nature Photonics,2018,12(6):349-354. doi: 10.1038/s41566-018-0145-0
|
[35] |
HE P, LIU Y Y, ZHAO K, et al. High-efficiency supercontinuum generation in solid thin plates at 0.1 TW level[J]. Optics Letters,2017,42(3):474-477. doi: 10.1364/OL.42.000474
|
[36] |
DENG Y P, SCHWARZ A, FATTAHI H, et al. Carrier-envelope-phase-stable, 1.2 mJ, 1.5 cycle laser pulses at 2.1 μm[J]. Optics Letters,2012,37(23):4973-4975. doi: 10.1364/OL.37.004973
|
[37] |
ZHANG Q B, TAKAHASHI E J, MÜCKE O D, et al. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses[J]. Optics Express,2011,19(8):7190. doi: 10.1364/OE.19.007190
|
[38] |
ISHII N, KANESHIMA K, KANAI T, et al. Generation of ultrashort intense optical pulses at 1.6 μm from a bismuth triborate-based optical parametric chirped pulse amplifier with carrier-envelope phase stabilization[J]. Journal of Optics,2015,17(9):094001. doi: 10.1088/2040-8978/17/9/094001
|
[39] |
XU L, XUE B, ISHII N, et al. 100-mJ class, sub-two-cycle, carrier-envelope phase-stable dual-chirped optical parametric amplification[J]. Optics Letters,2022,47(13):3371-3374. doi: 10.1364/OL.455811
|
[40] |
MIRANDA M, ARNOLD C L, FORDELL T, et al. Characterization of broadband few-cycle laser pulses with the d-scan technique[J]. Optics Express,2012,20(17):18732. doi: 10.1364/OE.20.018732
|
[41] |
KANE D J, TREBINO R. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating[J]. Optics Letters,1993,18(10):823-825. doi: 10.1364/OL.18.000823
|
[42] |
PAYE J, RAMASWAMY M, FUJIMOTO J G, et al. Measurement of the amplitude and phase of ultrashort light pulses from spectrally resolved autocorrelation[J]. Optics Letters,1993,18(22):1946-1948. doi: 10.1364/OL.18.001946
|
[43] |
TSANG T, KRUMBÜGEL M A, DELONG K W, et al. Frequency-resolved optical-gating measurements of ultrashort pulses using surface third-harmonic generation[J]. Optics Letters,1996,21(17):1381-1383. doi: 10.1364/OL.21.001381
|
[44] |
LEE D, AKTURK S, GABOLDE P, et al. Experimentally simple, extremely broadband transient-grating frequency-resolved-opticalgating arrangement[J]. Optics Express,2007,15(2):760. doi: 10.1364/OE.15.000760
|
[45] |
FITTINGHOFF D N, BOWIE J L, SWEETSER J N, et al. Measurement of the intensity and phase of ultraweak, ultrashort laser pulses[J]. Optics Letters,1996,21(12):884-886. doi: 10.1364/OL.21.000884
|
[46] |
LOZOVOY V V, PASTIRK I, DANTUS M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation[J]. Optics Letters,2004,29(7):775-777. doi: 10.1364/OL.29.000775
|
[47] |
KIM K T, ZHANG C M, SHINER A D, et al. Petahertz optical oscilloscope[J]. Nature Photonics,2013,7(12):958-962. doi: 10.1038/nphoton.2013.286
|
[48] |
WYATT A S, WITTING T, SCHIAVI A, et al. Attosecond sampling of arbitrary optical waveforms[J]. Optica,2016,3(3):303. doi: 10.1364/OPTICA.3.000303
|
[49] |
SAITO N, ISHII N, KANAI T, et al. All-optical characterization of the two-dimensional waveform and the Gouy phase of an infrared pulse based on plasma fluorescence of gas[J]. Optics Express,2018,26(19):24591. doi: 10.1364/OE.26.024591
|
[50] |
LIU Y Y, GHOLAM-MIRZAEI S, BEETAR J E, et al. All-optical sampling of few-cycle infrared pulses using tunneling in a solid[J]. Photonics Research,2021,9(6):929. doi: 10.1364/PRJ.420916
|
[51] |
SOMMER A, BOTHSCHAFTER E M, SATO S A, et al. Attosecond nonlinear polarization and light-matter energy transfer in solids[J]. Nature,2016,534(7605):86-90. doi: 10.1038/nature17650
|
[52] |
ZIMIN D, WEIDMAN M, SCHÖTZ J, et al. Petahertz-scale nonlinear photoconductive sampling in air[J]. Optica,2021,8(5):586. doi: 10.1364/OPTICA.411434
|
[53] |
KOROBENKO A, JOHNSTON K, KUBULLEK M, et al. Femtosecond streaking in ambient air[J]. Optica,2020,7(10):1372. doi: 10.1364/OPTICA.398846
|
[54] |
BIONTA M R, RITZKOWSKY F, TURCHETTI M, et al. On-chip sampling of optical fields with attosecond resolution[J]. Nature Photonics,2021,15(6):456-460. doi: 10.1038/s41566-021-00792-0
|
[55] |
HUI D D, ALQATTAN H, YAMADA S, et al. Attosecond electron motion control in dielectric[J]. Nature Photonics,2022,16(1):33-37. doi: 10.1038/s41566-021-00918-4
|
[56] |
MEYER K, PESSOT M, MOUROU G, et al. Subpicosecond photoconductivity overshoot in gallium arsenide observed by electro-optic sampling[J]. Applied Physics Letters,1988,53(23):2254-2256. doi: 10.1063/1.100270
|
[57] |
RIDENTE E, MAMAIKIN M, ALTWAIJRY N, et al. Electro-optic characterization of synthesized infrared-visible light fields[J]. Nature Communications,2022,13:1111. doi: 10.1038/s41467-022-28699-6
|
[58] |
LIU Y Y, BEETAR J E, NESPER J, et al. Single-shot measurement of few-cycle optical waveforms on a chip[J]. Nature Photonics,2022,16(2):109-112. doi: 10.1038/s41566-021-00924-6
|
[59] |
ECKBRETH A C. BOXCARS: crossed-beam phase-matched CARS generation in gases[J]. Applied Physics Letters,1978,32(7):421-423. doi: 10.1063/1.90070
|
[1] | CHAI Jinguo, YU Shancheng, ZHU Dandan, KANG Lixin, WANG Zhengtai, XU Lulu, REN Yuxuan, TONG Kai. Detection method for calibration of gas concentrations based on absorption peaks in frequency domain[J]. Journal of Applied Optics, 2024, 45(1): 142-149. DOI: 10.5768/JAO202445.0103002 |
[2] | ZHENG Fengzhu, NING Fei, WANG Huilin, WU Xiongxiong, WANG Guan, ZHAO Zhicao, ZHOU Yun, WANG Le. Qualitative analysis of reliability on servo stabilization platform of electro-optical system[J]. Journal of Applied Optics, 2022, 43(5): 853-858. DOI: 10.5768/JAO202243.0501004 |
[3] | Ma Zhongxiao, Gong Quancheng, Chen Ying, Wang Huilin. Analysis and study on influence factors of target geo-locating accuracy for electro-optical reconnaissance system[J]. Journal of Applied Optics, 2018, 39(1): 1-6. DOI: 10.5768/JAO201839.0101001 |
[4] | Tan Songnian, Li Quanchao, Zhang Hongwei, Li Lei. Design and analysis of azimuth-gimbal in aerial opto-electronic stabilized platform[J]. Journal of Applied Optics, 2016, 37(3): 327-331. DOI: 10.5768/JAO201637.0301001 |
[5] | SUN Qing, DENG Yu-qiang, YU Jing, XU Tao, Chen Qing-jun. Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide[J]. Journal of Applied Optics, 2012, 33(3): 554-557. |
[6] | DU Jun-feng, ZHANG Meng-wei, ZHANG Xiao-ming. Angle measurement accuracy of photoelectric theodolite[J]. Journal of Applied Optics, 2012, 33(3): 466-473. |
[7] | XUE Shan, CAO Guo-hua, YANG Pu-liang, LIU Han, SONG Yu-long. Dynamic characteristics analysis of gimbal in electro-optic radar stabilized platform[J]. Journal of Applied Optics, 2011, 32(6): 1067-1071. |
[8] | WANG Xiao, MAO Heng, ZHAO Da-zun. Frequency domain analysis for orthogonal polynomials based on annulus sector area[J]. Journal of Applied Optics, 2009, 30(1): 153-157. |
[9] | ZHANG Ming-yi, LI Xin-nan. Accuracy analysis of stitching interferometry for test of largediameter mirror[J]. Journal of Applied Optics, 2006, 27(5): 446-449. |
[10] | ZHANG Qiang, NA Yan, LI Jian-jun. Image matching based on geometric feature of edges and the correlation in frequency domain[J]. Journal of Applied Optics, 2006, 27(4): 285-288. |
1. |
于周锋,郭飞,王惠林. 一种无人机光电吊舱故障信息动态排序方法. 航空计算技术. 2021(01): 71-74 .
![]() | |
2. |
陈天池. 不完全齿轮盘的有限元自由模态分析. 科技创新与应用. 2018(18): 61-62 .
![]() | |
3. |
李大泉,洪华杰,原东阳,江献良. 差动柔性绳传动惯性稳定平台载荷分析与结构校核. 应用光学. 2018(05): 619-626 .
![]() | |
4. |
李志远,黄方. 活塞发声器辐射单元固有模态分析. 水雷战与舰船防护. 2017(04): 1-4+14 .
![]() | |
5. |
马爱秋,张明,卢恒,薛永刚,袁博,冯婕,赵玮,高强. 某机载红外转塔低温像面抖动的分析与研究. 应用光学. 2017(04): 649-654 .
![]() | |
6. |
李全超,谭淞年,李蕾,张洪伟. 某红外相机稳定平台框架结构设计与分析. 红外技术. 2016(09): 728-732 .
![]() | |
7. |
谭淞年,李全超,张洪伟,李蕾. 某航空光电稳定平台方位框架设计和分析. 应用光学. 2016(03): 327-331 .
![]() |