WANG Gang, WAN Xun, CUI Zhichao, XIE Liangping. Control scheme of high working temperature based on dynamic temperature control in FOG[J]. Journal of Applied Optics, 2023, 44(5): 1153-1156. DOI: 10.5768/JAO202344.0508004
Citation: WANG Gang, WAN Xun, CUI Zhichao, XIE Liangping. Control scheme of high working temperature based on dynamic temperature control in FOG[J]. Journal of Applied Optics, 2023, 44(5): 1153-1156. DOI: 10.5768/JAO202344.0508004

Control scheme of high working temperature based on dynamic temperature control in FOG

More Information
  • Received Date: November 28, 2022
  • Revised Date: April 11, 2023
  • Available Online: June 09, 2023
  • The increase of working temperature of fiber-optic gyroscope (FOG) is mainly limited by the optical path system, which can be improved by optimizing the control scheme. Through the theoretical analysis of FOG optical system, the FOG control scheme based on dynamic temperature control was proposed. The improved effect of the was verified by experiments. On the one hand, the dynamic temperature control scheme of FOG can reduce the power consumption at high temperature and improve the high-temperature working temperature. On the other hand, it can reduce the change of FOG scale factor caused by the temperature fluctuations.

  • [1]
    JIN J, HE J L, SONG N F, et al. A compact four-axis interferometric fiber optic gyroscope based on multiplexing for space application[J]. Journal of Lightwave Technology,2020,38(23):6655-6663. doi: 10.1109/JLT.2020.3015713
    [2]
    HAN S L, LUO S L, LU J Z, et al. A unified modeling approach of stochastic error in fiber optic gyro and application in INS initial alignment[J]. IEEE Sensors Journal,2020,20(13):7241-7252. doi: 10.1109/JSEN.2020.2978671
    [3]
    ZAKIROV R, UMAROV A. Fiber optic gyroscope and accelerometer application in aircraft inertial system[C]//2020 International Conference on Information Science and Communications Technologies (ICISCT). Tashkent, Uzbekistan: IEEE, 2021: 1-3.
    [4]
    梁霄, 魏天啸, 谢良平, 等. 闭环光纤陀螺精度性能提升方法研究[J]. 红外技术,2019,41(9):819-823.

    LIANG Xiao, WEI Tianxiao, XIE Liangping, et al. Research on precision enhancement of closed-loop FOGs[J]. Infrared Technology,2019,41(9):819-823.
    [5]
    李彬, 谢良平, 刘卓, 等. 光纤陀螺启动过程标度因数补偿方法[J]. 中国惯性技术学报,2018,26(4):495-498.

    LI Bin, XIE Liangping, LIU Zhuo, et al. Compensation technique of scale factor during FOG start-up[J]. Journal of Chinese Inertial Technology,2018,26(4):495-498.
    [6]
    万洵, 谢良平. 光纤陀螺温度场仿真分析与陀螺外罩结构优化设计[J]. 应用光学,2016,37(3):353-358. doi: 10.5768/JAO201637.0301006

    WAN Xun, XIE Liangping. Temperature field analysis and structure redesign of fiber optic gyroscope[J]. Journal of Applied Optics,2016,37(3):353-358. doi: 10.5768/JAO201637.0301006
    [7]
    周闻青, 费宇明, 洪桂杰, 等. 高精度光纤陀螺零位误差的磁温特性研究[J]. 应用光学,2020,41(1):220-227. doi: 10.5768/JAO202041.0108001

    ZHOU Wenqing, FEI Yuming, HONG Guijie, et al. Research on magnetic temperature characteristics of zero error on high precision fiber-optic gyro[J]. Journal of Applied Optics,2020,41(1):220-227. doi: 10.5768/JAO202041.0108001
    [8]
    王夏霄, 冯志芳, 秦祎, 等. 光纤陀螺光纤环轴向磁敏感性研究[J]. 中国激光,2015,42(8):163-168.

    WANG Xiaxiao, FENG Zhifang, QIN Yi, et al. Study on the axial magnetic field sensitivity in optical fiber coil of fiber optic gyroscope[J]. Chinese Journal of Lasers,2015,42(8):163-168.
    [9]
    KORKISHKO Y N, FEDOROV V A, PRILUTSKIY V E, et al. Highest bias stability fiber-optic gyroscope SRS-5000[C]//2017 DGON Inertial Sensors and Systems (ISS). Karlsruhe, Germany: IEEE, 2017: 1-23.
    [10]
    LI H Z, LIN Y, LIU L, et al. Signal processing improvement of passive resonant fiber optic gyroscope using a reciprocal modulation-demodulation technique[J]. Optics Express,2020,28(12):18103. doi: 10.1364/OE.390605
    [11]
    张文帅, 申利梅, 涂志龙, 等. 微型层式热电模块制冷特性研究[J]. 工程热物理学报,2020,41(3):526-532.

    ZHANG Wenshuai, SHEN Limei, TU Zhilong, et al. Study on refrigeration characteristics of layered micro-thermoelectric module[J]. Journal of Engineering Thermophysics,2020,41(3):526-532.
    [12]
    谢良平, 宫晓宇, 张春熹. 使用滤波器和探测器阵列的光纤陀螺光源平均波长漂移监测[J]. 中国惯性技术学报,2019,27(6):799-803.

    XIE Liangping, GONG Xiaoyu, ZHANG Chunxi. Light source mean wavelength shift monitoring in fiber optic gyroscope with filter-detector array[J]. Journal of Chinese Inertial Technology,2019,27(6):799-803.
    [13]
    LEFEVRE H C. The fiber-optic gyroscope [M]. 3rd ed. Norwood: Artech House, 2022: 23-24.
    [14]
    张桂才. 光纤陀螺原理与技术[M]. 北京: 国防工业出版社, 2010: 197-198.

    ZHANG Guicai. The principles and technologies of fiber-optic gyroscope[M]. Beijing: National Defense Industry Press, 2010: 197-198.
    [15]
    国防科学技术工业委员会. 光纤陀螺仪测试方法: GJB 2426A-2004[S]. 北京: 国防科工委军标出版发行部, 2004.

    Commission of Science, Technology and Industry for National Defense. Test method for fiber optic gyroscope. GJB 2426A-2004[S]. Beijing: Commission of Science, Technology and Industry for National Defense, 2004.
  • Related Articles

    [1]SU Zhengcheng, LI Jun, WU Fan, LAN Shiqi, YAN Bo. Effect of temperature-induced half-wave voltage characteristics of Y-waveguide modulator on resonant fiber optic gyroscope[J]. Journal of Applied Optics, 2024, 45(2): 461-466. DOI: 10.5768/JAO202445.0208003
    [2]LIU Junhan, QU Tianliang, ZHANG Xuan, LIU Yanqing, XIONG Changxin. Fabrication of ultra-high Q factor and millimeter-scale crystal echo wall microcavity[J]. Journal of Applied Optics, 2023, 44(4): 742-747. DOI: 10.5768/JAO202344.0401006
    [3]HUANG Yueruihan, MA Jiajun, ZHANG Zipeng, LIU Jianning, JIANG Junbiao. Scale factor compensation technology of laser gyro with total reflection prism[J]. Journal of Applied Optics, 2023, 44(2): 444-449. DOI: 10.5768/JAO202344.0207003
    [4]HU Tieli, WANG Honghong, LI Siwei, CAO Feng, HU Xinyi, FAN Zhe, YANG Yuxin, GUO Jian, YOU Yue, YANG Ke, LI Hui, YU Yang. Research on temperature control and self-tuning for 30℃~420℃ blackbody[J]. Journal of Applied Optics, 2023, 44(2): 392-397. DOI: 10.5768/JAO202344.0203005
    [5]CHEN Wei, LIU Yu, LI Hongtao, SUN Jing, YAN Ning. Improved ViBe algorithm based on adaptive threshold and dynamic update factor[J]. Journal of Applied Optics, 2022, 43(3): 444-452. DOI: 10.5768/JAO202243.0302004
    [6]ZHOU Wenqing, FEI Yuming, HONG Guijie, YING Guangyao, YE Xin. Research on magnetic temperature characteristics of zero error on high precision fiber-optic gyro[J]. Journal of Applied Optics, 2020, 41(1): 220-227. DOI: 10.5768/JAO202041.0108001
    [7]WANG Xuelian, WU Zhifeng, SONG Guicai, LU Xiaofeng, DAI Caihong. Measurement of absolute linearity using laser covering large-scale dynamic range[J]. Journal of Applied Optics, 2019, 40(4): 681-685. DOI: 10.5768/JAO201940.0407001
    [8]Wan Xun, Xie Liangping. Temperature field analysis and structure redesign of fiber optic gyroscopeWan Xun, Xie Liangping[J]. Journal of Applied Optics, 2016, 37(3): 353-358. DOI: 10.5768/JAO201637.0301006
    [9]ZHI Jian-hui, DONG Xin-min, KONG Xing-wei, WANG Xu-feng. Analysis of external influence factors in camera calibration[J]. Journal of Applied Optics, 2014, 35(2): 286-291.
    [10]QIAO Xue-guang, LI Ting, WANG Hong-liang, JIA Zhen-an, LIU Qin-peng, WANG Xiang-yu. Response characteristics of high temperature resistant fiber Bragg grating[J]. Journal of Applied Optics, 2007, 28(2): 209-211.
  • Cited by

    Periodical cited type(6)

    1. 杨朝政,李淑英. 基于虚拟现实技术的激光三维图像优化系统设计. 激光杂志. 2023(04): 152-157 .
    2. 郏露锋,张凯亮. 基于LabVIEW的大视场激光视频图像采集系统. 激光杂志. 2023(04): 259-264 .
    3. 张宇驰,陈义,李鸿. 基于视频技术的煤矿在线应急预警系统的研究与应用. 煤炭技术. 2022(02): 189-193 .
    4. 姜睿林,陈春晓,崔建良,徐俊琪. 基于FPGA的内窥镜窄带光生成方法研究. 生物医学工程研究. 2022(01): 7-12 .
    5. 张泽宇,张弘,伍凌帆,杨一帆,李旭亮. 基于FPGA的实时Bayer解马赛克算法与实现. 应用光学. 2022(02): 240-247 . 本站查看
    6. 格日勒,王刚,柳智鑫. 基于视频技术的煤矿在线应急预警系统研究. 能源与环保. 2021(09): 41-45 .

    Other cited types(4)

Catalog

    Article views (149) PDF downloads (37) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return