Citation: | YANG Xiaoqiang, TAO Zhong, LIU Yingqi. Design and analysis of support structure of small and medium-sized common optical path system[J]. Journal of Applied Optics, 2023, 44(5): 998-1009. DOI: 10.5768/JAO202344.0501008 |
Primary and secondary mirror support technology is one of the key technologies of common optical path system. For the airborne optical system operating within the temperature change range of ±60 ℃, the pairing of invar steel and ULE, titanium alloy and K9 were selected as the materials of primary and secondary mirrors as well as supporting structures according to the matching principle of thermal expansion coefficient, and the athermalization flexible support structure with high stiffness was designed. Finally, the imaging quality of the primary and secondary mirror types as well as the whole optical system was analyzed by using a self-developed opto-mechanical co-simulation program. The results show that when invar steel and ULE are paired, under uniform temperature difference of ±60 ℃ and 10 ℃ axial and radial temperature gradient, the surface shape is better than (1/100) λ after the primary and secondary mirror removing defocus, and the root-mean-square (RMS) radius of spot diagram of the whole optical system is smaller than Airy spot radius. The central wavefront of the phase surface is better than (1/50) λ, the MTF@63 lp/mm is better than 0.45, and the first-order natural frequency with athermalization flexible support is up to 263 Hz. When titanium alloy and K9 are paired, the imaging index of the system under uniform temperature difference of 60 ℃ meets the requirements, and the imaging quality at 10 ℃ axial and radial temperature cannot meet the requirements. The resolution of invar steel and ULE paired opto-mechanical system was tested at low temperature, and there is no obvious change in resolution, which indicates that the design and analysis are feasible.
[1] |
鲜勇, 李文强, 赵翔. 一种机载多波段共光路望远光学系统[J]. 电光与控制,2020,27(8):109-112. doi: 10.3969/j.issn.1671-637X.2020.08.022
XIAN Yong, LI Wenqiang, ZHAO Xiang. Design of an airborne telescope optical system with multispectrum and common aperture[J]. Electronics Optics & Control,2020,27(8):109-112. doi: 10.3969/j.issn.1671-637X.2020.08.022
|
[2] |
LEE J H, JUNG Y S, RYOO S Y, et al. Imaging performance analysis of an EO/IR dual band airborne camera[J]. Journal of the Optical Society of Korea,2011,15(2):174-181. doi: 10.3807/JOSK.2011.15.2.174
|
[3] |
ANEES A. Handbook of optomechanical engineer-ing[M]. 2nd ed. Boca Raton: CRC Press, 2017: 300-358.
|
[4] |
YODER P R, VUKOBRATOVICH D. Opto-mechanical systems design [M]. 4th ed. Boca Raton: CRC Press, 2015: 440-450.
|
[5] |
罗致帮, 李 巍, 徐佳坤, 等. 临近空间816 mm口径望远镜复合支撑主镜组件设计[J]. 光学精密工程,2021,29(3):558-569. doi: 10.37188/OPE.20212903.0558
LUO Zhibang, LI Wei, XU Jiakun, et al. Design of primary mirror assembly with compound support for φ816 mm near space telescope[J]. Optics and Precision Engineering,2021,29(3):558-569. doi: 10.37188/OPE.20212903.0558
|
[6] |
王克军, 董吉洪, 周平伟, 等. 空间遥感器反射镜背部支撑结构设计[J]. 红外与激光工程,2019,48(7):0718004-1-11. doi: 10.3788/IRLA201948.0718004
WANG Kejun, DONG Jihong, ZHOU Pingwei, et al. Back support structure design of mirror of space remote sensor[J]. Infrared and Laser Engineering,2019,48(7):0718004-1-11. doi: 10.3788/IRLA201948.0718004
|
[7] |
程志峰, 刘福贺, 荀显, 等. 双波段共口径成像系统光机设计与分析[J]. 红外与激光工程,2015,44(11):3366-3372. doi: 10.3969/j.issn.1007-2276.2015.11.034
CHENG Zhifeng, LIU Fuhe, XUN Xian, et al. Opto-mechanical design and analysis of dual-band sharing aperture imaging system[J]. Infrared and Laser Engineering,2015,44(11):3366-3372. doi: 10.3969/j.issn.1007-2276.2015.11.034
|
[8] |
李猛, 闫钰峰, 白素平. 机载光谱仪前置光学系统主镜支撑结构设计[J]. 长春理工大学学报(自然科学版),2020,43(5):62-67.
LI Meng, YAN Yufeng, BAI Suping. Structural design of primary mirror support for the front optical system of the onboard spectrometer[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2020,43(5):62-67.
|
[9] |
魏梦琦, 高世林, 温庆荣, 等. 某机载光电系统主镜的轻量化设计与分析[J]. 激光与红外,2015,51(5):634-639.
WEI Mengqi, GAO Shilin, WEN Qingrong, et al. The lightweight design and analysis of the primary mirror for a new airborne opto-electronic system[J]. Laser & Infrared,2015,51(5):634-639.
|
[10] |
杨利伟, 李志来, 薛栋林. 结构胶固化收缩对反射镜面形影响的分析与试验[J]. 光学技术,2014,40(4):307-312. doi: 10.3788/GXJS20144004.0307
YANG Liwei, LI Zhilai, XUE Donglin. Analysis and test for effect of structural adhesive shrinkage during curing on mirror surface[J]. Optical Techniue,2014,40(4):307-312. doi: 10.3788/GXJS20144004.0307
|
[11] |
周小华, 邢辉, 杨居奎. 空间光学遥感器反射镜组件中环氧胶的选用[J]. 航天返回与遥感,2019,40(3):65-71. doi: 10.3969/j.issn.1009-8518.2019.03.009
ZHOU Xiaohua, XING Hui, YANG Jukui. Epoxy selection for reflect mirror assembly in space remote sensor[J]. Spacecraft Recovery & Remote Sensing,2019,40(3):65-71. doi: 10.3969/j.issn.1009-8518.2019.03.009
|
[12] |
韩旭, 吴清文, 董得义, 等. 室温硫化胶层建模在透镜结构分析中的应用[J]. 光学精密工程,2010,18(1):118-125.
HAN Xu, WU Qingwen, DONG Deyi, et al. Application of RTV adhesive modeling to structure analysis of reflective mirror[J]. Optics and Precidion Engineering,2010,18(1):118-125.
|
[13] |
DOYLE K B, MICHELS G J, GENBERG V L. Athermal design of nearly incompressible bonds[J]. SPIE,2002,4771:296-303.
|
[14] |
刘强, 何欣, 张峰, 等. 反射镜无热装配中胶层厚度的计算及控制[J]. 光学精密工程,2012,20(10):2229-2236. doi: 10.3788/OPE.20122010.2229
LIU Qiang, HE Xin, ZHANG Feng, et al. Calculational and control of adhesive layer in reflector athermal mount[J]. Optics and Precision Engineering,2012,20(10):2229-2236. doi: 10.3788/OPE.20122010.2229
|
[15] |
杨建莉, 齐媛, 杨晓强, 等. 一种轻质薄型反射镜的挠性支撑结构设计[J]. 应用光学,2017,38(5):815-819.
YANG Jianli, QI Yuan, YANG Xiaoqiang, et al. Flexible support structure design of lightweight thin reflector[J]. Journal of Applied Optics,2017,38(5):815-819.
|
[16] |
王忠素, 翟岩, 梅贵. 空间光学遥感器反射镜柔性支撑的设计[J]. 光学精密工程,2010,18(8):1833-1839.
WANG Zhongsu, ZHAI Yan, MEI Gui. Design of flexible support structure of reflector in space remote sensor[J]. Optics and Precision Engineering,2010,18(8):1833-1839.
|
[17] |
李伟艳, 吕群波, 刘扬阳, 等. 基于低体分 SiC/Al主镜框的空间相机主支撑结构热特性分析与验证[J]. 光子学报,2021,50(4):0412001-1-10.
LI Weiyan, LYU Qunbo, LIU Yangyang, et al. Thermal characteristics analysis and verification of primary supporting structure for spaceborne camera based on low volume SiC/Al primary mirror frame[J]. Acta Photonica Sinica,2021,50(4):0412001-1-10.
|
[18] |
张颖, 丁振敏, 赵慧洁, 等. 光机热集成分析中镜面刚体位移分离[J]. 红外与激光工程,2012,41(10):2763-2767. doi: 10.3969/j.issn.1007-2276.2012.10.039
ZHANG Ying, DING Zhenmin, ZHAO Huijie, et al. Integrated optomechanical analysis the displacement of the mirror body separation[J]. Infrared and Laser Engineering,2012,41(10):2763-2767. doi: 10.3969/j.issn.1007-2276.2012.10.039
|
[19] |
DOYLE K B, MICHELS G J, GENBERG V L. Integrated optomechanical analysis [M]. 2nd ed. Washington: SPIE Press, 2002: 100-150.
|
[20] |
DOYLE K B, GENBERG V L, MICHELS G J, et al. Optical modeling of finite element surface displacements using commercial software[J]. SPIE,2005,5867:1-12.
|
[21] |
刘家国, 李林. 光机热集成分析中数据转换接口研究[J]. 北京理工大学学报,2007,27(5):428-431. doi: 10.3969/j.issn.1001-0645.2007.05.012
LIU Jiaguo, LI Lin. Study on the data transfer interface in the thermal/structural/optical integrated analysis[J]. Transactions of Beijing Institute of Technology,2007,27(5):428-431. doi: 10.3969/j.issn.1001-0645.2007.05.012
|
[22] |
杨晓强. 卡塞格林系统在振动环境下的光轴抖动量研究[J]. 应用光学,2018,39(增刊):60-64.
YANG Xiaoqiang. Line-of-sight jitter of Cassegrain system under vibration[J]. Journal of Applied Optics,2018,39(Sup):60-64.
|
[23] |
姬文晨, 张宇, 黄攀, 等. 温度梯度对红外光学系统成像质量的影响[J]. 激光与红外,2015,42(4):640-645.
JI Wenchen, ZHANG Yu, HUANG Pan. Effect of temperature gradient on imaging quality of infrared optical system[J]. Laser & Infrared,2015,42(4):640-645.
|
[1] | XU Guoqing, WANG Reng, CHEN Xintian, QIAO Hui, YANG Xiaoyang, CHU Kaihui, WANG Dahui, YANG Pengling, LI Xiangyang. Potential application of HgCdTe detector with composition gradient in laser measurement[J]. Journal of Applied Optics, 2024, 45(3): 549-556. DOI: 10.5768/JAO202445.0310009 |
[2] | ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005 |
[3] | WEI Yongjie, LI Mingkai, WANG Haoran, ZHANG Shuri. Spray angle measurement method based on grayscale image differential gradient[J]. Journal of Applied Optics, 2022, 43(5): 929-934. DOI: 10.5768/JAO202243.0503001 |
[4] | PENG Yuanjing, XU Mingming, CHEN Yi, HU Zhongwen, JI Hangxin, WANG Lei. Multi-objective optimization design and stability analysis of flexible support system for large rectangular collimator mirror[J]. Journal of Applied Optics, 2021, 42(2): 215-222. DOI: 10.5768/JAO202142.0201002 |
[5] | WEI Yongjie, GE Tingting, ZHANG Zhongqi, MA Baoqiang, CHE Jinchao. Algorithm of crack extraction based on accumulated gradient[J]. Journal of Applied Optics, 2019, 40(5): 818-822. DOI: 10.5768/JAO201940.0502005 |
[6] | WANG Yan, HANG Lingxia. Relationship between gradient of antireflection film and laser induced damage threshold[J]. Journal of Applied Optics, 2019, 40(1): 143-149. DOI: 10.5768/JAO201940.0107003 |
[7] | Yang Jianli, Qi Yuan, Yang Xiaoqiang, Zhu Lei, Teng Guoqi, Shi Daoyun. Flexible support structure design of lightweight thin reflector[J]. Journal of Applied Optics, 2017, 38(5): 815-819. DOI: 10.5768/JAO201738.0505002 |
[8] | WU Qiong, XIANG Yang, HOU Li-jie, TAO Xue, SUN Ming-jiao. Optical design of arthroscope based on gradient refractive index lens[J]. Journal of Applied Optics, 2012, 33(5): 944-948. |
[9] | CUI Yun-xia, NIU Yan-xiong, WANG Cai-li. Numerical analysis of CW laser damage in Germanium[J]. Journal of Applied Optics, 2011, 32(2): 267-271. |
[10] | ZONG Si-guang, WANG Jiang-an. Detection Based on MultiDegree andOrientation Gradient Fusion for Weak Infrared DotObjects[J]. Journal of Applied Optics, 2005, 26(5): 25-028. |