Citation: | ZHANG Jin, XIANG Yang, HUANG Lei, DOU Yanhong. Design of dispersive objective of chromatic confocal for scratch detection[J]. Journal of Applied Optics, 2023, 44(5): 992-997. DOI: 10.5768/JAO202344.0501007 |
The chromatic confocal displacement sensor has good applicability in the measurement of the scratch depth of the locomotive wheel axle, and the dispersive objective is the key device that determines the detection range and resolution of the sensor. According to the detection requirements, combined with the chromatic confocal principle and linear dispersion conditions, an appropriate initial structure was selected. The Zemax optical design software optimized and analyzed the initial structure, and designed a high-linearity and short-conjugate dispersion lens. The measurement range is 1 mm, the operating spectral range is 400 nm~700 nm, and the spherical aberration of the lens is less than 1.7 μm. The axial displacement resolution of the system is 0.615 μm, the dispersion linearity determination coefficient R2 is 0.997 5, and the conjugate distance is 104 mm, which makes the lens miniaturized and has the advantages of high resolution and high linearity.
[1] |
迟歆妍, 杨璐, 黄雷. 白光共聚焦式机车轮对测量装置的研制[J]. 计量技术,2020,551(7):27-31.
CHI Xinyan, YANG Lu, HUANG Lei. Development of measuring device for white light confocal locomotive wheelset[J]. Measurement Technique,2020,551(7):27-31.
|
[2] |
RUPRECHT A K, PRUSS C, TIZIANI H J, et al. Confocal micro-optical distance sensor: principle and design[J]. Optical Measurement Systems for Industrial Inspection IV,2005,5856:128-135. doi: 10.1117/12.612008
|
[3] |
SHAFIR E, BERKOVIC G. Expanding the realm of fiber optic confocal sensing for probing position, displacement, and velocity[J]. Applied Optics,2006,45(30):7772-7777. doi: 10.1364/AO.45.007772
|
[4] |
刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜的线性色散物镜设计[J]. 光学精密工程,2013,21(10):2473-2479. doi: 10.3788/OPE.20132110.2473
LIU Qian, YANG Weichuan, YUAN Daocheng, et al. Design of linear dispersive objective for chromatic confocal microscope[J]. Optics and Precision Engineering,2013,21(10):2473-2479. doi: 10.3788/OPE.20132110.2473
|
[5] |
武芃樾, 袁道成. 光谱共焦位移传感器镜头设计研究[J]. 工具技术,2012,46(2):81-83. doi: 10.3969/j.issn.1000-7008.2012.02.024
WU Pengyue, YUAN Daocheng. Research of design of lenses used for chromatic confocal displacement sensor[J]. Tool Engineering,2012,46(2):81-83. doi: 10.3969/j.issn.1000-7008.2012.02.024
|
[6] |
田雨, 刘宾. 光谱共焦位移传感器色散镜头设计[J]. 光学技术,2018,44(3):381-384. doi: 10.13741/j.cnki.11-1879/o4.2018.03.023
TIAN Yu, LIU Bin. Design of dispersion lens for chromatic confocal displacement sensor[J]. Optical Technique,2018,44(3):381-384. doi: 10.13741/j.cnki.11-1879/o4.2018.03.023
|
[7] |
王继凯, 向阳, 王培芳. 红外双层衍射光学元件衍射效率研究[J]. 长春理工大学学报(自然科学版),2016,39(2):25-29.
WANG Jikai, XIANG Yang, WANG Peifang. Study on diffraction efficiency of infrared double-layer diffractive optical element[J]. Journal of Changchun University of Science and Technology(Natural Science Edition),2016,39(2):25-29.
|
[8] |
罗刚银, 王弼陡, 缪鹏, 等. 激光共聚焦近红外荧光扫描系统光学设计[J]. 应用光学,2015,36(1):29-34. doi: 10.5768/JAO201536.0101006
LUO Gangyin, WANG Bidou, MIAO Peng, et al. Optical design of near infrared fluorescence confocal laser scanning system[J]. Journal of Applied Optics,2015,36(1):29-34. doi: 10.5768/JAO201536.0101006
|
[9] |
梁青, 薛丹, 伍星昱. 光谱共焦位移传感器镜头设计[J]. 光学技术,2019,45(6):653-659. doi: 10.13741/j.cnki.11-1879/o4.2019.06.003
LIANG Qing, XUE Dan, WU Xingyu. Lens design for chromatic confocal displacement sensor[J]. Optical Technique,2019,45(6):653-659. doi: 10.13741/j.cnki.11-1879/o4.2019.06.003
|
[10] |
刘乾, 杨维川, 袁道成, 等. 光谱共焦显微镜中色散物镜材料的优化选择[J]. 光电工程,2012,39(8):111-117.
LIU Qian, YANG Weichuan, YUAN Daocheng, et al. Optimization and selection of materials for dispersive objective of chromatic confocal microscope[J]. Opto-Electronic Engineering,2012,39(8):111-117.
|
[11] |
闫凯. 光谱共焦厚度检测系统研究[D]. 杭州: 浙江大学, 2018.
YAN Kai. Research of thickness detection system based on spectral confocal[D]. Hangzhou: Zhejiang University, 2018.
|
[12] |
NOVAK J, MIKS A. Hyperchromats with linear dependence of longitudinal chromatic aberration on wavelength[J]. Optik - International Journal for Light and Electron Optics,2005,116(4):165-168. doi: 10.1016/j.ijleo.2005.01.003
|
[13] |
ZHANG Z L, LU R S. Initial structure of dispersion objective for chromatic confocal sensor based on doublet lens[J]. Optics and Lasers in Engineering,2021,139:160424.
|
[14] |
郁晓晖, 高志山, 袁群. 宽光谱长工作距弱荧光信号检测显微物镜设计[J]. 光学精密工程,2018,26(7):1588-1595. doi: 10.3788/OPE.20182607.1588
YU Xiaohui, GAO Zhishan, YUAN Qun. Design of board spectrum and long work distance microscope objective for weak fluorescence signal detection[J]. Optics and Precision Engineering,2018,26(7):1588-1595. doi: 10.3788/OPE.20182607.1588
|
[15] |
刘雨沁, 张孟伟. 变倍光学系统的公差分析[J]. 光学仪器,2013,35(2):42-45. doi: 10.3969/j.issn.1005-5630.2013.02.009
LIU Yuqin, ZHANG Mengwei. Tolerance analysis of switch-in-group zoom optical system[J]. Optical Instruments,2013,35(2):42-45. doi: 10.3969/j.issn.1005-5630.2013.02.009
|
[1] | DONG Ying, TAO Zhong, ZHAO Xingmei, SHI Jiantao, WANG Guan. Research on high surface shape accuracy filter fabricated by dual-deposition method[J]. Journal of Applied Optics, 2024, 45(5): 1049-1055. DOI: 10.5768/JAO202445.0505003 |
[2] | ZHANG Yu, ZHANG Feng, GUO Rui, SU Ying, ZHANG Yunlong, XU Zengqi, WANG Fuchao. Tooling calibration of secondary aspheric workpiece position in magneto-rheological polishing[J]. Journal of Applied Optics, 2022, 43(3): 518-523. DOI: 10.5768/JAO202243.0305002 |
[3] | LI Dahai, WANG Ruiyang, ZHANG Xinwei. Method of optical flat elements surface figure detection with high accuracy based on phase measurement deflectormetry[J]. Journal of Applied Optics, 2020, 41(4): 844-856. DOI: 10.5768/JAO202041.0405001 |
[4] | Guo Qiao-shuang, Wang Min, Liao Xiao-dong. Wavefront fitting with interpolation to detect optical surface deviation[J]. Journal of Applied Optics, 2015, 36(4): 566-571. DOI: 10.5768/JAO201536.0403002 |
[5] | LI Ning, YIN Zi-qiang, TIAN Fu-jing. Optical belt polishing for optical surface[J]. Journal of Applied Optics, 2014, 35(1): 116-121. |
[6] | MA Fang, FU Xiu-hua, JIA Zong-he, XIE Ying, TANG Hao-long. Processing technology of aspheric silicon lens in IR tracking system[J]. Journal of Applied Optics, 2012, 33(4): 784-787. |
[7] | BAI Zhao, HE Jun-feng, YUAN Qi, QIAN Jun, YANG Jian-li, XUE Xiao-peng, WANG Ling, LI Liang-fu. Improving image stitching accuracy for double CCD[J]. Journal of Applied Optics, 2010, 31(6): 918-921. |
[8] | MU Guang-yuan, FU Xiu-hua, SU Jia-ni, ZHANG Rui-zhi. Computer controlled polishing for middle or small double-sided aspheric lens[J]. Journal of Applied Optics, 2009, 30(5): 818-822. |
[9] | ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, ZHANG Wen-bo. Study on LOS stabilization accuracy of optoelectronic imaging system on moving carrier[J]. Journal of Applied Optics, 2009, 30(4): 537-541. |
[10] | ZHANG Ming-yi, LI Xin-nan. Accuracy analysis of stitching interferometry for test of largediameter mirror[J]. Journal of Applied Optics, 2006, 27(5): 446-449. |
1. |
LIANG Xiaolin,ZHOU Songqing,LI Xiaowu,ZHOU Ling,CHEN Huihuang. Reflectivity measurement technology of special high reflective mirrors and uncertainty analysis of measurement results. Optoelectronics Letters. 2023(01): 49-54 .
![]() |
|
2. |
姚林海,陆培国,杨永安,龙井宇,杨修林,卜英华. 光束指向稳定性高精度检测方法研究. 应用光学. 2022(02): 339-344 .
![]() | |
3. |
于东钰,俞兵,吕春莉,董再天,杨科,宫经珠,段园园,陈超,张魁甲,黎高平,郑波. 基于光压原理的大功率激光功率测量. 应用光学. 2022(04): 798-802 .
![]() | |
4. |
穆让修,张佳,龙井宇,李刚,卜英华,韩耀锋,寿少峻. 高功率激光器的光谱合束技术研究. 应用光学. 2022(04): 792-797 .
![]() | |
5. |
丁宇,姜锋,郑荣山,张洁. 美国高能激光武器发展概况(特邀). 光电技术应用. 2021(06): 1-9 .
![]() | |
6. |
管雯璐,谭逢富,侯再红,秦来安,何枫,张巳龙,吴毅. 探测器阵列靶散射取样衰减单元设计. 红外与激光工程. 2021(12): 286-293 .
![]() |