ZHANG Yu, ZHANG Feng, GUO Rui, SU Ying, ZHANG Yunlong, XU Zengqi, WANG Fuchao. Tooling calibration of secondary aspheric workpiece position in magneto-rheological polishing[J]. Journal of Applied Optics, 2022, 43(3): 518-523. DOI: 10.5768/JAO202243.0305002
Citation: ZHANG Yu, ZHANG Feng, GUO Rui, SU Ying, ZHANG Yunlong, XU Zengqi, WANG Fuchao. Tooling calibration of secondary aspheric workpiece position in magneto-rheological polishing[J]. Journal of Applied Optics, 2022, 43(3): 518-523. DOI: 10.5768/JAO202243.0305002

Tooling calibration of secondary aspheric workpiece position in magneto-rheological polishing

More Information
  • Received Date: November 17, 2021
  • Revised Date: December 17, 2021
  • Available Online: April 18, 2022
  • In recent years, the magneto-rheological polishing as a deterministic processing method has become an essential way to obtain the high-precision aspheric surfaces. Take the rotationally symmetric secondary paraboloid as an example, the theoretical method of using the polishing wheel to calibrate the workpiece position in magneto-rheological polishing was analyzed, and the experimental verification was carried out on a Φ 230 mm fused quartz workpiece. The workpiece position was calibrated with less than 3 times of adjustment in the X direction and Y direction, respectively, and the offset in both X direction and Y direction was lower than 0.009 mm, respectively. The surface polishing experiment was conducted by magneto-rheological polishing technology on the workpiece, and the root-mean-square (RMS) of surface shape was converged from λ/7 to λ/40 after processing. The experimental results show that the proposed tooling calibration method of aspheric workpiece position is simple and reliable, which can accurately locate the workpiece and conducive to magneto-rheological polishing processing for high-precision aspheric surface.

  • [1]
    杨力. 先进光学制造技术[M]. 北京: 科学出版社, 2001.

    YANG Li. Advanced optical manufacture technology[M]. Beijing: Science Press, 2001.
    [2]
    郭贵新, 贾宗合, 付秀华, 等. 基于散粒磨料振动抛光非球面加工技术研究[J]. 应用光学,2017,38(1):89-93.

    GUO GuIxin, JIA Zonghe, FU Xiuhua, et al. Aspheric machining technology based on vibration polishing of loose abrasive grains[J]. Journal of Applied Optics,2017,38(1):89-93.
    [3]
    张小兵. 非球面光学元件加工及检测技术综述[J]. 兵器材料科学与工程,2014(2):106-111.

    ZHANG Xiaobing. Review on manufacture and measurement method of aspheric surface optical part[J]. Ordnance Material Science and Engineering,2014(2):106-111.
    [4]
    李池娟, 孙昌锋, 席喆, 等. 非球面光学元件的应用[J]. 激光与红外,2013,43(3):244-247. doi: 10.3969/j.issn.1001-5078.2013.03.003

    LI Chijuan, SUN Changfeng, XI Zhe, et al. Application of optical aspheric element[J]. Laser and Infrared,2013,43(3):244-247. doi: 10.3969/j.issn.1001-5078.2013.03.003
    [5]
    李晓奇, 刘海鸥. 研磨修带法加工二次非球面[J]. 光电技术应用,2016,31(5):32-35. doi: 10.3969/j.issn.1673-1255.2016.05.009

    LI Xiaoqi, LIU Haiou. Grinding trimming method for processing axisymmetric two aspheric surfaces[J]. Electro-Optic Technology Application,2016,31(5):32-35. doi: 10.3969/j.issn.1673-1255.2016.05.009
    [6]
    孟晓辉, 王永刚, 李文卿, 等. Ф420 mm高次非球面透镜的加工与检测[J]. 光学精密工程,2016,24(12):3068-3075. doi: 10.3788/OPE.20162412.3068

    MENG Xiaohui, WANG Yonggang, LI Wenqing, et al. Fabricating and testing of Φ420 mm high-order aspheric lens[J]. Optics and Precision Engineering,2016,24(12):3068-3075. doi: 10.3788/OPE.20162412.3068
    [7]
    李龙响, 郑立功, 邓伟杰, 等. 应用四轴联动磁流变机床加工曲面[J]. 光学精密工程,2015,23(10):2819-2826. doi: 10.3788/OPE.20152310.2819

    LI Longxiang, ZHENG Ligong, DENG Weijie, et al. Magnetorheological finishing for curve surface based on 4-axis machine[J]. Optics and Precision Engineering,2015,23(10):2819-2826. doi: 10.3788/OPE.20152310.2819
    [8]
    袁巨龙, 吴喆, 吕冰海, 等. 非球面超精密抛光技术研究现状[J]. 机械工程学报,2012,48(23):167-177. doi: 10.3901/JME.2012.23.167

    YUAN Julong, WU Zhe, LYU Binghai, et al. Review on ultra-precision polishing technology of aspheric surface[J]. Mechanical Engineering,2012,48(23):167-177. doi: 10.3901/JME.2012.23.167
    [9]
    张峰. 磁流变抛光技术[J]. 光学精密工程,1999,7(5):1-8. doi: 10.3321/j.issn:1004-924X.1999.05.001

    ZHANG Feng. Magnetorheological finishing technology[J]. Optics and Precision Engineering,1999,7(5):1-8. doi: 10.3321/j.issn:1004-924X.1999.05.001
    [10]
    HARRIS D C. History of magnetorheological fini-shing[J]. SPIE,2011,8016:1-22.
    [11]
    JACOBS S D, GOLINI D, HSU Y, et al. Magnetorheological finishing: a deterministic process for optics manufacturing[J]. SPIE,1995,2576:372-382.
    [12]
    戴一帆, 石峰, 彭小强, 等. 光学镜面磁流变确定性修形的实现[J]. 光学学报,2010,30(1):198-205. doi: 10.3788/AOS20103001.0198

    DAI Yifan, SHI Feng, PENG Xiaoqiang, et al. Deterministic figuring in optical machining by magnetorheological finishing[J]. Acta Optical Sinica,2010,30(1):198-205. doi: 10.3788/AOS20103001.0198
    [13]
    王彦哲, 李圣怡, 胡皓. 磁流变抛光工件自动定位原理与方法研究[J]. 航空精密制造技术,2013,49(5):5-8. doi: 10.3969/j.issn.1003-5451.2013.05.002

    WANG Yanzhe, LI Shengyi, HU Hao. Research on principle and approach of workpiece automatic localization technique in magnetorheological finishing[J]. Aviation Precision Manufacturing Technology,2013,49(5):5-8. doi: 10.3969/j.issn.1003-5451.2013.05.002
    [14]
    周涛, 张云飞, 樊炜, 等. 磁流变抛光回转对称非球面工件精确自定位[J]. 光学精密工程,2020,28(3):610-620. doi: 10.3788/OPE.20202803.0610

    ZHOU Tao, ZHANG Yunfei, FAN Wei, et al. Precise localization of rotary symmetrical aspheric workpiece in magnetorheological finishing[J]. Optics and Precision Engineering,2020,28(3):610-620. doi: 10.3788/OPE.20202803.0610
    [15]
    郑立功, 李龙响, 王孝坤, 等. 磁流变抛光去除函数的原点位置标定[J]. 光学精密工程,2017,25(1):8-14. doi: 10.3788/OPE.20172501.0008

    ZHENG Ligong, LI Longxiang, WANG Xiaokun, et al. Coordinate-origin calibration of removal function in magnetorheological finishing[J]. Optics and Precision Engineering,2017,25(1):8-14. doi: 10.3788/OPE.20172501.0008
    [16]
    潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    PAN Junhua. The design, manufacture and test of the aspherical optical surfaces[M]. Suzhou: Suzhou University Press, 2004.
  • Related Articles

    [1]HE Wenfan, XU Junqi, LI Yang. Effects of different preparation parameters on optical properties of porous TiO2 thin films[J]. Journal of Applied Optics, 2024, 45(6): 1277-1283. DOI: 10.5768/JAO202445.0605002
    [2]ZHANG Yaoyuan, WANG Rui, JIANG Ruitao, DU Kunyang, LI Yuanyang. Performance evaluation method of silicon-based optical phased array[J]. Journal of Applied Optics, 2021, 42(2): 242-246. DOI: 10.5768/JAO202142.0201006
    [3]LI Qiantao, XIONG Changxin, YANG Changcheng. Research on chemical strengthening technology for K9 optical glass[J]. Journal of Applied Optics, 2021, 42(1): 188-193. DOI: 10.5768/JAO202142.0105002
    [4]SHI Yunyun, XU Junqi, SU Junhong. Optical, electrical and mechanical properties and applications of multicomponent composite films[J]. Journal of Applied Optics, 2020, 41(2): 405-420. DOI: 10.5768/JAO202041.0205005
    [5]Yi Siqi, Ding Haolin, Long Zhiqiang. Optimal design of supersonic gaseous film cooling optical performance[J]. Journal of Applied Optics, 2017, 38(4): 549-554. DOI: 10.5768/JAO201738.0401006
    [6]PAN Yong-qiang, BAI Tao, TIAN Yu-jun. Influence of UV irradiation on optical property of TiO2 thin film[J]. Journal of Applied Optics, 2013, 34(1): 128-132.
    [7]LIAO Zhi-bo, JIAO Wen-chun-FU Rui-min, . Thermal optics property simulation of optical window for remote sensing[J]. Journal of Applied Optics, 2011, 32(3): 407-410.
    [8]XU Liang, LI Chuang, FAN Xue-wu. Deformation of optical window and its influence on collimator’s optical performance[J]. Journal of Applied Optics, 2010, 31(6): 914-917.
    [9]ZHU Hai-feng, ZHANG Ya-ping, LI Shu-guang, HUANG Liu-bin, LIU Yan-min. Aspherical IOLs design and influence of pupil on optical performance of AIOL[J]. Journal of Applied Optics, 2010, 31(4): 557-561.
    [10]PIAO Yong, LIANG Hong jun, GAO Peng, DING Wan-yu, LU Wen-qi, MA Tengcai, XU Jun. The influence of deposition parameters on chemical structure and optical properties of silicon carbonitride film[J]. Journal of Applied Optics, 2006, 27(4): 274-280.
  • Cited by

    Periodical cited type(5)

    1. 黄富瑜,李刚,史云胜,张晓良,邹昌帆,禹烨. 多光谱多光轴平行性检测方案设计与误差分析. 光电工程. 2019(02): 12-20 .
    2. 杨雪,陈文红,张玺,初华,钱琨,张珊,方洁,孙宁,张勇,郭延龙,欧阳艳蓉. 宽光谱光电系统多光轴平行性工程化测试方法研究. 激光与红外. 2019(08): 978-982 .
    3. 张磊,邱伟,张凯. 基于双五棱镜组件的大间距光轴平行性检测方法. 红外与激光工程. 2018(07): 176-180 .
    4. 应家驹,陈玉丹,武东生,刘杰. 双目光轴平行性检校仪检测精度分析. 激光与红外. 2018(06): 750-755 .
    5. 张磊,崔启胤,张凯. 适应大温差变化的多光轴一致性测试系统. 长春理工大学学报(自然科学版). 2017(04): 10-13 .

    Other cited types(2)

Catalog

    Article views (386) PDF downloads (29) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return