Citation: | WANG Zhibin, TIAN Yao, SUN Pengcheng, ZHANG Zheng, ZHANG Feng, ZHANG Yunlong, JIAO Mingyin. PSD analysis and control strategy of optical component polishing[J]. Journal of Applied Optics, 2022, 43(4): 772-779. DOI: 10.5768/JAO202243.0405004 |
In the field of optical fabrication, the power spectral density (PSD) is used to characterize the error spectrum. However, the PSD is the statistical information of surface error, which is not as intuitive as peak-valley (PV) and root mean square (RMS). In order to analyze the relationship between PSD and process parameters, based on the definition of PSD, the influence of different parameters of random surface contour on optical PSD was analyzed, and summarized the key control points of PSD. Then, the PSD curves processed under the typical paths of numerical control polishing were analyzed on flat glass. The results show that the PSD is correlated with the amplitude and frequency distribution of random contour, and the phase has almost no influence on it. When the RMS is close, the slope of PSD linear fitting and RMS Slope decreases with the increase of the auto-correlation length of the random profile. The short-range machining path can effectively suppress the peak value of PSD curve compared with the long-range ordered path, which makes the optical element meet the requirements of spectrum suppression.
[1] |
KIMMEL R K , PARKS R E. ISO 10110 Optics and optical instruments preparation of drawings for optical elements and systems[S]. Washington DC: OSA Standards Committee, 1995.
|
[2] |
李智钢, 鲍振军, 朱衡. 多磨头数控抛光对大口径离轴抛物面镜中频误差的抑制[J]. 强激光与粒子束,2018,30(6):41-46. doi: 10.11884/HPLPB201830.170457
LI ZhiGang, BAO Zhenjun, ZHU Heng, et al. Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing[J]. High Power Laser and Particle Beams,2018,30(6):41-46. doi: 10.11884/HPLPB201830.170457
|
[3] |
李富仁, 王贵林, 陈善勇, 等. 强光光学零件加工误差频谱分析与控制方法研究[J]. 航空精密制造技术,2013,49(4):1-4. doi: 10.3969/j.issn.1003-5451.2013.04.001
LI Furen, WANG GuiLin, CHEN Shanyong, et al. Study on spectrum characteristics and controlling method of machining errors of optical elements used in high power laser system[J]. Aviation Precision Manufacturing Technology,2013,49(4):1-4. doi: 10.3969/j.issn.1003-5451.2013.04.001
|
[4] |
王贵林, 李完小, 向纪邦. 强光光学零件磁流变抛光误差的频谱特征与演变研究[J]. 航空精密制造技术,2019,55(1):6-9.
WANG Guilin, LI Wanxiao, XIANG Jibang. Spectral feature and evolvement of machining error of high-power optical elements in magnetorheological finishing[J]. Aviation Precision Manufacturing Technology,2019,55(1):6-9.
|
[5] |
SHIRAISHI M, OSHINO T, MURAKAMI K, et al. Flare modeling and calculation on EUV optics[J]. SPIE,2010,7636:763629.
|
[6] |
KATSUHIKO M, TETSUYA O, HIROYUKI K, et al. Development progress of optics for extreme ultraviolet lithography at Nikon[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS,2009,8(4):041507. doi: 10.1117/1.3238522
|
[7] |
AIKENS D M. WOLFE C R, LAWSON J K Use of power spectral density (PSD) functions in specifying optics for the national ignition facility[J]. SPIE,1995,2576:281-292.
|
[8] |
钟波, 陈贤华, 王健, 等. 高精度离轴非球面透镜的制造与检测[J]. 红外与激光工程, 2018, 47(7): 0718003-1-8.
ZHONG Bo, CHEN Xianhua, WANG Jian. Fabrication and test of high-precision off-axis aspheric lens[J]. Infrared and Laser Engineering. 2018, 47(7): 0718003-1-8.
|
[9] |
陈建超. 超精密加工表面粗糙度测量方法对比及功率谱密度评价[D]. 哈尔滨: 哈尔滨工业大学, 2009.
CHEN Jianchao. Comparison of ultra precision machined surface roughness measurement methods and power spectral density characterization[D]. Harbin: Harbin Institute of Technology, 2009.
|
[10] |
张昊宇, 钟波, 赵世杰, 等. 光学表面非均匀中频误差的评价与修正[J]. 应用光学,2015,36(2):295-299.
ZHANG Haoyu, ZHONG Bo, ZHAO Shijie, et al. Evaluation and modification of nonuniform mid-spatial frequency error in optic surface[J]. Journal of Applied Optics,2015,36(2):295-299.
|
[11] |
LIAO D, YUAN Z, TANG C, et al. Mid-spatial frequency error (PSD-2) of optics induced during CCOS and full-aperture polishing[J]. Journal of the European Optical Society,2013,8:13031-13035. doi: 10.2971/jeos.2013.13031
|
[12] |
ALCOCK S G, LUDBROOK G D, OWEN T, et al. Using the power spectral density method to characterize the surface topography of optical surfaces[J]. SPIE,2010,7801:780108.
|
[13] |
SEMI. MF1811-97:Guide for estimating the power spectral density function and related finish parameters from surface profile data[S]. Washington DC: ASTM , 2016.
|
[14] |
MA Zhanlong, PENG Lirong, WANG Junlin. Ultra-smooth polishing of high-precision optical surface[J]. Optik,2013,124(24):6586-6589. doi: 10.1016/j.ijleo.2013.05.093
|
[15] |
DUNN C, WALKER D D, BEAUCAMP A. et al, Improving surface PSD using a random tool path[J]. Frontiers in Optics,2008:OThB5.
|
[16] |
TIAN Huang, ZHAO Dong, CAO Zhongchen. Trajectory planning of optical polishing based on optimized implementation of dwell time[J]. Precision Engineering,2020,62:223-231. doi: 10.1016/j.precisioneng.2019.12.006
|
[17] |
BERGSTRÖM D. Rough surface generation & analysis [EB/OL]. ( 2012-2-26) [2022-6-5]. http://www.mysimlabs.com/surface_generation.html
|
[1] | LI Hongqiang, MAO Quanhua, AN Zhixuan, LIN Zhilin, WANG Yingjie, MENG Wentao, ZHU Zhiyue, ZHANG Zhen, Juan Daniel Prades Garcia. Wearable fiber grating demodulation based on photonic integrated chip[J]. Journal of Applied Optics, 2023, 44(1): 219-225. DOI: 10.5768/JAO202344.0108001 |
[2] | LIU Qiang, LI Binwen, SUN Yudan, LIU Chao, LIU Wei, FU Tianshu, ZHAO Jin, TAI Shengnan. FBG demodulation method based on long-period fiber gratings[J]. Journal of Applied Optics, 2022, 43(1): 160-166. DOI: 10.5768/JAO202243.0108002 |
[3] | Lu Chuang, Zhao Meirong, Wang Shuang, Liu Tiegen, Jiang Junfeng, Yan Jinling, Zheng Yelong. Deviation calibration method for fiber Bragg grating demodulation system based on tunable Fabry-Perot filter drived by triangular wave[J]. Journal of Applied Optics, 2017, 38(1): 147-152. DOI: 10.5768/JAO201738.0108002 |
[4] | YAO Guo-zhen, LI Yong-qian. Impact of F-P etalon temperature characteristics on FBG wavelength demodulation accuracy[J]. Journal of Applied Optics, 2014, 35(3): 542-546. |
[5] | WANG Jian, TANG Feng, REN Li-yong, XU Jin-tao, HU Man-li. Vibration demodulation using fiber grating based on tunable Gaussian filter[J]. Journal of Applied Optics, 2010, 31(6): 993-999. |
[6] | GAO Xue-qing, JIANG De-sheng. FBG wavelength demodulation technology with doubleedge average[J]. Journal of Applied Optics, 2006, 27(6): 581-584. |
[7] | LI Zhi-quan, LI Ya-ping, ZHU Dan-dan, LI Li-xin. Demodulation scheme for filtering method based fiber Bragg grating sensing[J]. Journal of Applied Optics, 2006, 27(4): 327-331. |
[8] | ZHU Dan-dan, WANG Hai-fang, ZHANG Ran, LI Ya-ping1, YAN Li-juan, ZHANG Jun-jie. Strain Measuring System Based on Chirped Gratings and Edge Linear Filtering Demodulation Technology[J]. Journal of Applied Optics, 2005, 26(4): 50-52. |
[9] | FAN Dian, JIANG De-sheng, MEI Jia-chun. Interrogation Project for Encoding Fiber Bragg Grating Sensor Array[J]. Journal of Applied Optics, 2005, 26(4): 46-49. |
[10] | LI Zhi-quan, XU Ming-yan, TANG Jing, CHEN Ying, ZHAO Yan-tao. Study on Techniques of Signal Demodulation in Fiber Bragg Grating Sensing System[J]. Journal of Applied Optics, 2005, 26(4): 36-41. |
1. |
张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 .
![]() | |
2. |
张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 .
![]() | |
3. |
赵佳乐,周冰,王广龙,应家驹,王强辉,邓磊. 基于广义逆矩阵的BRDF模型参数拟合方法. 激光技术. 2023(03): 407-412 .
![]() |