Citation: | LIU Qiang, LI Binwen, SUN Yudan, LIU Chao, LIU Wei, FU Tianshu, ZHAO Jin, TAI Shengnan. FBG demodulation method based on long-period fiber gratings[J]. Journal of Applied Optics, 2022, 43(1): 160-166. DOI: 10.5768/JAO202243.0108002 |
The demodulation method of fiber Bragg gratings (FBG) based on long-period fiber gratings (LPFG) was studied. The transmission spectrum of LPFG was used as the edge filter to demodulate the FBG, and the demodulation performance mainly depended on the transmission spectrum depth of LPFG. The influence of CO2 laser writing technique on the transmission spectrum was analyzed in detail, and the LPFG with transmission spectrum depth of 25 dB was manufactured and used as the FBG demodulation device. The demodulation system was built with the FBG pasted on the surface of the metal strain sheet. The static and dynamic response of the sensing system was tested. The experimental results show that the proposed method has the advantages of simple production process, low cost, good linear dynamic range and higher sensitivity.
[1] |
YANG Mei, LIU Qidi, NAQAWE H S, et al. Movement detection in soft robotic gripper using sinusoidally embedded fiber optic sensor[J]. Sensors,2020,20(5):1312. doi: 10.3390/s20051312
|
[2] |
ROVERI N, CARCATERRA A, SESTIERI A. Real-time monitoring of railway infrastructures using fibre Bragg grating sensors[J]. Mechanical Systems and Signal Processing,2015,60/61:14-28. doi: 10.1016/j.ymssp.2015.01.003
|
[3] |
ZHANG Xiaolei, LIU Xianming, ZHANG Faxiang, et al. Reliable high sensitivity FBG geophone for low frequency seismic acquisition[J]. Measurement,2018,129:62-67. doi: 10.1016/j.measurement.2018.07.009
|
[4] |
HONG Chengyu, ZHANG Yifan, ZHANG Mengxi, et al. Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques[J]. Sensors and Actuators A:Physical,2016,244:184-197. doi: 10.1016/j.sna.2016.04.033
|
[5] |
邵飞, 杨宁, 孙维, 等. 基于光纤传感的航天器结构健康状态监测研究[J]. 航天器工程,2018,27(2):95-103. doi: 10.3969/j.issn.1673-8748.2018.02.015
SHAO Fei, YANG Ning, SUN Wei, et al. Research on spacecraft structural health monitoring based on optical fiber sensing technology[J]. Spacecraft Engineering,2018,27(2):95-103. doi: 10.3969/j.issn.1673-8748.2018.02.015
|
[6] |
KANG D, KIM H Y, KIM D H, et al. Thermal characteristics of FBG sensors at cryogenic temperatures for structural health monitoring[J]. International Journal of Precision Engineering and Manufacturing,2016,17(1):5-9. doi: 10.1007/s12541-016-0001-4
|
[7] |
JIANG Junfeng, YANG Yining, ZHANG Xuezhi, et al. Distortion-tolerated high-speed FBG demodulation method using temporal response of high-gain photodetector[J]. Optical Fiber Technology,2018,45:399-404. doi: 10.1016/j.yofte.2018.08.019
|
[8] |
ZOU Hongbo, LIANG Dakai, ZENG Jie. Dynamic strain measurement using two wavelength-matched fiber Bragg grating sensors interrogated by a cascaded long-period fiber grating[J]. Optics and Lasers in Engineering,2012,50(2):199-203. doi: 10.1016/j.optlaseng.2011.09.005
|
[9] |
KERSEY A D. Fiber-grating based strain sensor with phase sensitive detection[C]// First European Conference on Smart Structures and Materials. USA: SPIE, 1992: 61-67.
|
[10] |
MELLE S M, LIU K, MEASURES R M. A passive wavelength demodulation system for guided-wave Bragg grating sensors[J]. IEEE Photonics Technology Letters,1992,4(5):516-518. doi: 10.1109/68.136506
|
[11] |
张卫华, 童峥嵘, 苗银萍, 等. 基于倾斜光纤光栅的传感解调技术[J]. 纳米技术与精密工程,2008,6(4):284-287. doi: 10.3969/j.issn.1672-6030.2008.04.009
ZHANG Weihua, TONG Zhengrong, MIAO Yinping, et al. Sensing and demodulation technique based on tilted fiber Bragg grating[J]. Nanotechnology and Precision Engineering,2008,6(4):284-287. doi: 10.3969/j.issn.1672-6030.2008.04.009
|
[12] |
杨洋, 刘兵, 赵勇, 等. DWDM技术在新型波长解调方法中的应用[J]. 红外与激光工程,2016,45(8):101-107.
YANG Yang, LIU Bing, ZHAO Yong, et al. Application of DWDM technology in new wavelength demodulation method[J]. Infrared and Laser Engineering,2016,45(8):101-107.
|
[13] |
张燕君, 王光宇, 付兴虎. 长周期光纤光栅-布拉格光纤光栅多波长解调[J]. 光电工程,2016,43(8):13-17.
ZHANG Yanjun, WANG Guangyu, FU Xinghu. Multiple wavelength demodulation method of long period fiber grating and fiber Bragg grating[J]. Opto-Electronic Engineering,2016,43(8):13-17.
|
[14] |
QIAN Yu, ZHAO Yong, WU Qilu, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B:Chemical,2018,260:86-105. doi: 10.1016/j.snb.2017.12.077
|
[15] |
CHUANG K C, MA C C, WANG H C. Simultaneous measurement of dynamic displacement and strain in a single fiber using coarse wavelength-division multiplexing and fiber Bragg-grating filter-based sensing system[J]. Applied Optics,2016,55(9):2426-2434. doi: 10.1364/AO.55.002426
|
[16] |
朱雨雨, 郗亚茹, 张亚妮, 等. 长周期光纤光栅光谱特性仿真研究[J]. 中国光学,2020,13(3):451-458.
ZHU Yuyu, XI Yaru, ZHANG Yani, et al. Numerical simulation of transmission spectra characterization of long-period fiber grating[J]. Chinese Optics,2020,13(3):451-458.
|
[17] |
李厚昶, 廖云程, 刘娟, 等. 长周期光纤光栅的制备与传感特性研究[J]. 南昌航空大学学报(自然科学版),2020,34(3):88-99.
LI Houchang, LIAO Yuncheng, LIU Juan, et al. Study on preparation and sensing characteristics of long period fiber grating[J]. Journal of Nanchang Hangkong University (Social Sciences),2020,34(3):88-99.
|
[1] | BAI Xinru, JIANG Shilei, GONG Xuhang, JIANG Dacheng, FENG Jiang. Design of optical system for dual-band co-aperture heatless gun objective lens[J]. Journal of Applied Optics, 2025, 46(1): 32-40. DOI: 10.5768/JAO202546.0101001 |
[2] | WANG Xiaobo, WANG Xi, LIU Guangkang, XIA Shuce, FU Mingliang, HAO Xinjian, CAO Qiankun. Design of athermal and lightweight optical system based on long-wave infrared detector[J]. Journal of Applied Optics, 2021, 42(3): 429-435. DOI: 10.5768/JAO202142.0301009 |
[3] | Huang Wen-hua, Lin Feng. Design of day and night lens with large aperture and sensor[J]. Journal of Applied Optics, 2016, 37(1): 45-51. DOI: 10.5768/JAO201637.0101008 |
[4] | FU Yue-gang, HUANG Yun-han, LIU Zhi-ying. Design of multispectral infrared athermal optical system[J]. Journal of Applied Optics, 2014, 35(3): 510-514. |
[5] | GUO Sheng-nan, FU Yue-gang, LIU Zhi-ying, MA Chen-hao. Athermal design of two-color infrared common aperture optical system[J]. Journal of Applied Optics, 2013, 34(6): 1019-1024. |
[6] | LIU Xiu-jun, ZHANG Jin-wang, ZHANG Hua-wei, LIU Bo. Athermal design of cooled MWIR optical system[J]. Journal of Applied Optics, 2013, 34(3): 391-396. |
[7] | WANG Zhi-bin, ZHANG Yue-bin, WANG Zhong-dong, XIE Sha-sha, HAO Yang. Heat pipe heat sink of high power LED based onthermal resistance network[J]. Journal of Applied Optics, 2012, 33(6): 1014-1018. |
[8] | LIU Jun, WU Xiao-chen. Athermalisation of infrared Cassegrain optical system in missile[J]. Journal of Applied Optics, 2012, 33(1): 175-180. |
[9] | LIN Fu-tiao, LIU Zhao-hui. MWIR refractive /diffractive hybrid athermal optical system and its stray light analysis[J]. Journal of Applied Optics, 2010, 31(5): 833-837. |
[10] | WANG Xue-xin, JIAO Ming-yin. Combination of optical passive and mechanical-electrical athermalisation[J]. Journal of Applied Optics, 2010, 31(3): 354-359. |
1. |
杜国军,王春雨,欧宗耀,王聪,胡斌. 多基准轴透射式系统装调方法. 应用光学. 2021(02): 247-254 .
![]() | |
2. |
邓佳逸,常伟军,王楠茜,邱亚峰. 基于反射式平行光管法的紫外透镜焦距测试研究. 红外技术. 2021(10): 925-929 .
![]() | |
3. |
王东杰,柯君玉,王海超,阴刚华. 光学装调中的一种基于猫眼效应的焦距测试方法. 光学技术. 2020(04): 466-471 .
![]() | |
4. |
赵希婷,张超,冀翼,刘辉,焦文春,黄阳,李重阳,张志飞. 超宽视场离轴光学系统畸变一致性校正技术. 应用光学. 2020(05): 1032-1036 .
![]() | |
5. |
邢辉,张占东,刘剑峰,宋俊儒,金忠瑞,刘志远. 多谱段多通道离轴三反空间相机装调. 红外. 2020(12): 1-11 .
![]() | |
6. |
李晓磊. 基于平行光管法的薄凸透镜焦距测量. 应用光学. 2019(05): 859-862 .
![]() | |
7. |
裴昱,陈远鸣,卞晓阳,赵勇毅,赵正杰,常建华. 基于RBF神经网络气压补偿的非色散红外SF_6气体传感器. 应用光学. 2018(03): 366-372 .
![]() | |
8. |
蒋正东,朱荣刚,陈磊,何勇. 基于双朗奇光栅的焦距测量技术研究. 应用光学. 2018(05): 687-690 .
![]() |