XU Xiangxiang, WU Yang, SU Hang, LIU Jinlong, YANG Huizhen, GONG Chenglong. FPGA -based SPGD algorithm implementation of adaptive optical system[J]. Journal of Applied Optics, 2021, 42(5): 810-816. DOI: 10.5768/JAO202142.0501008
Citation: XU Xiangxiang, WU Yang, SU Hang, LIU Jinlong, YANG Huizhen, GONG Chenglong. FPGA -based SPGD algorithm implementation of adaptive optical system[J]. Journal of Applied Optics, 2021, 42(5): 810-816. DOI: 10.5768/JAO202142.0501008

FPGA -based SPGD algorithm implementation of adaptive optical system

More Information
  • Received Date: March 23, 2021
  • Revised Date: June 15, 2021
  • Available Online: July 29, 2021
  • The field programmable gate array (FPGA) has the advantages of repeatable programming and flexible algorithm implementation. With 97-element deformable mirror as the prototype, the general and rapid implementation scheme of the FPGA-based stochastic parallel gradient descent (SPGD) control algorithm was proposed. Firstly, the TimeGen software was adopted to analyze the time sequence of the SPGD algorithm. Secondly, the Vivado software was adopted to configure and programme the FPGA of the SPGD algorithm in the field of random disturbance voltage generation, performance indexes calculation, as well as control voltage calculation and output. Finally, the calculation results of each module and those of Matlab were compared and analyzed. The results prove the rationality and feasibility of the proposed scheme and provide the basis for the next step of hardware implementation and application of FPGA-based SPGD algorithm.
  • [1]
    GU H, LIU M, LIU H, et al. An algorithm combining convolutional neural networks with SPGD for SLAO in FSOC[J]. Optics Communications,2020,475:126243. doi: 10.1016/j.optcom.2020.126243
    [2]
    HUANG G, GENG C, LI F, et al. Adaptive SMF coupling based on precise-delayed SPGD algorithm and its application in free space optical communication[J]. IEEE Photonics Journal,2018,10(3):1-12.
    [3]
    SONG J, LI Y, CHE D, et al. Coherent beam combining based on the SPGD algorithm with a momentum term[J]. Optik,2020,202:163650. doi: 10.1016/j.ijleo.2019.163650
    [4]
    方舟, 徐项项, 李鑫, 等. 自适应增益的SPGD算法[J]. 红外与激光工程,2020,49(10):27-33.

    FANG Zhou, XU Xiangxiang, LI Xin, et al. Adaptive gain SPGD algorithm[J]. Infrared and Laser Engineering,2020,49(10):27-33.
    [5]
    马士青, 杨平, 赖柏衡, 等. 基于高效随机并行梯度下降算法的板条激光光束净化[J]. 中国激光,2020,47(8):183-190.

    MA Shiqing, YANG Ping, LAI Baiheng, et al. Slat laser beam purification based on efficient stochastic parallel gradient descent algorithm[J]. Chinese Laser,2020,47(8):183-190.
    [6]
    FANG Zhou, XU Xiangxiang, LI Xin, et al. SPGD algorithm optimization based on Adam optimizer[J]. SPIE,2020,11567:677-684.
    [7]
    VORONTSOV M A, CARHART G W. Adaptive phas-distortion on correction based on parallel gradient-desent optimization[J]. Optics Letters,1997,22(12):907-909. doi: 10.1364/OL.22.000907
    [8]
    陈波, 杨慧珍, 张金宝, 等. 点目标成像自适应光学随机并行梯度下降算法性能指标与收敛速度[J]. 光学学报,2009,29(5):1143-1148. doi: 10.3788/AOS20092905.1143

    CHEN Bo, YANG Huizhen, ZHANG Jinbao, et al. Performance index and convergence rate of adaptive optics stochastic parallel gradient descent algorithm for point target imaging[J]. Acta Optica Sinica,2009,29(5):1143-1148. doi: 10.3788/AOS20092905.1143
    [9]
    YU Zhang, TIAN Xiaobo, LIANG Rongguang. SPGD and Newton iteration mixed algorithm used in freeform surface metrology[J]. Optics and Lasers in Engineering,2020,129:106050. doi: 10.1016/j.optlaseng.2020.106050
    [10]
    VORONTSOV M A, CARHART G W, COHEN M, et al. Adaptive optics based on analog parallel stochastic optimization: analysis and experimental demonstration[J]. Journal of the Optical Society of America A Optics Image Science & Vision,2000,17(8):1440.
    [11]
    毛昕蓉, 刘铠铭, 汪乐意, 等. 基于FPGA的图像畸变矫正算法研究[J]. 应用光学,2020,41(1):86-93. doi: 10.5768/JAO202041.0102004

    MAO Xinrong, LIU Kaiming, WANG Leyi, et al. Research on image distortion correction algorithm based on FPGA[J]. Applied Optics,2020,41(1):86-93. doi: 10.5768/JAO202041.0102004
    [12]
    朱元元, 刘浩, 佘啸宇, 等. 基于FPGA的CCD相机控制自适应算法及实现[J]. 中国电子科学研究院学报,2020,15(6):573-579. doi: 10.3969/j.issn.1673-5692.2020.06.013

    ZHU Yuanyuan, LIU Hao, SHE Xiaoyu, et al. FPGA-based CCD camera control adaptive algorithm and its implementation[J]. Journal of China Academy of Electronics,2020,15(6):573-579. doi: 10.3969/j.issn.1673-5692.2020.06.013
    [13]
    张金宝, 陈波, 王彩霞, 等. 自适应光学系统SPGD控制算法的FPGA硬件实现[J]. 光电工程,2009,36(9):46-51.

    ZHANG Jinbao, CHEN Bo, WANG Caixia, et al. FPGA hardware implementation of the adaptive optics system SPGD control algorithm[J]. Optoelectronic Engineering,2009,36(9):46-51.
    [14]
    张金宝, 陈波, 王彩霞, 等. 61单元自适应光学系统随机并行梯度下降算法动态实验研究[J]. 中国激光,2010,37(3):668-674. doi: 10.3788/CJL20103703.0668

    ZHANG Jinbao, CHEN Bo, WANG Caixia, et al. Dynamic experimental study on the stochastic parallel gradient descent algorithm of 61-element adaptive optics system[J]. Chinese Laser,2010,37(3):668-674. doi: 10.3788/CJL20103703.0668
    [15]
    张超. 基于FPGA的SPGD自适应光学控制平台研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2013.

    ZHANG Chao. Research on FPGA-based SPGD adaptive optics control platform[D]. Changchun: Graduate University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics), 2013.
  • Related Articles

    [1]DONG Ying, TAO Zhong, ZHAO Xingmei, SHI Jiantao, WANG Guan. Research on high surface shape accuracy filter fabricated by dual-deposition method[J]. Journal of Applied Optics, 2024, 45(5): 1049-1055. DOI: 10.5768/JAO202445.0505003
    [2]ZHANG Yu, ZHANG Feng, GUO Rui, SU Ying, ZHANG Yunlong, XU Zengqi, WANG Fuchao. Tooling calibration of secondary aspheric workpiece position in magneto-rheological polishing[J]. Journal of Applied Optics, 2022, 43(3): 518-523. DOI: 10.5768/JAO202243.0305002
    [3]LI Dahai, WANG Ruiyang, ZHANG Xinwei. Method of optical flat elements surface figure detection with high accuracy based on phase measurement deflectormetry[J]. Journal of Applied Optics, 2020, 41(4): 844-856. DOI: 10.5768/JAO202041.0405001
    [4]Guo Qiao-shuang, Wang Min, Liao Xiao-dong. Wavefront fitting with interpolation to detect optical surface deviation[J]. Journal of Applied Optics, 2015, 36(4): 566-571. DOI: 10.5768/JAO201536.0403002
    [5]LI Ning, YIN Zi-qiang, TIAN Fu-jing. Optical belt polishing for optical surface[J]. Journal of Applied Optics, 2014, 35(1): 116-121.
    [6]MA Fang, FU Xiu-hua, JIA Zong-he, XIE Ying, TANG Hao-long. Processing technology of aspheric silicon lens in IR tracking system[J]. Journal of Applied Optics, 2012, 33(4): 784-787.
    [7]BAI Zhao, HE Jun-feng, YUAN Qi, QIAN Jun, YANG Jian-li, XUE Xiao-peng, WANG Ling, LI Liang-fu. Improving image stitching accuracy for double CCD[J]. Journal of Applied Optics, 2010, 31(6): 918-921.
    [8]MU Guang-yuan, FU Xiu-hua, SU Jia-ni, ZHANG Rui-zhi. Computer controlled polishing for middle or small double-sided aspheric lens[J]. Journal of Applied Optics, 2009, 30(5): 818-822.
    [9]ZHU Hua-zheng, FAN Da-peng, MA Dong-xi, ZHANG Wen-bo. Study on LOS stabilization accuracy of optoelectronic imaging system on moving carrier[J]. Journal of Applied Optics, 2009, 30(4): 537-541.
    [10]ZHANG Ming-yi, LI Xin-nan. Accuracy analysis of stitching interferometry for test of largediameter mirror[J]. Journal of Applied Optics, 2006, 27(5): 446-449.
  • Cited by

    Periodical cited type(6)

    1. LIANG Xiaolin,ZHOU Songqing,LI Xiaowu,ZHOU Ling,CHEN Huihuang. Reflectivity measurement technology of special high reflective mirrors and uncertainty analysis of measurement results. Optoelectronics Letters. 2023(01): 49-54 .
    2. 姚林海,陆培国,杨永安,龙井宇,杨修林,卜英华. 光束指向稳定性高精度检测方法研究. 应用光学. 2022(02): 339-344 . 本站查看
    3. 于东钰,俞兵,吕春莉,董再天,杨科,宫经珠,段园园,陈超,张魁甲,黎高平,郑波. 基于光压原理的大功率激光功率测量. 应用光学. 2022(04): 798-802 . 本站查看
    4. 穆让修,张佳,龙井宇,李刚,卜英华,韩耀锋,寿少峻. 高功率激光器的光谱合束技术研究. 应用光学. 2022(04): 792-797 . 本站查看
    5. 丁宇,姜锋,郑荣山,张洁. 美国高能激光武器发展概况(特邀). 光电技术应用. 2021(06): 1-9 .
    6. 管雯璐,谭逢富,侯再红,秦来安,何枫,张巳龙,吴毅. 探测器阵列靶散射取样衰减单元设计. 红外与激光工程. 2021(12): 286-293 .

    Other cited types(4)

Catalog

    Article views PDF downloads Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return