LIU Peijin, WANG Xi, HE Ning. Multi-threshold segmentation method of infrared images based on improved fusion of GSO and 2D OTSU[J]. Journal of Applied Optics, 2021, 42(4): 671-677. DOI: 10.5768/JAO202142.0402006
Citation: LIU Peijin, WANG Xi, HE Ning. Multi-threshold segmentation method of infrared images based on improved fusion of GSO and 2D OTSU[J]. Journal of Applied Optics, 2021, 42(4): 671-677. DOI: 10.5768/JAO202142.0402006

Multi-threshold segmentation method of infrared images based on improved fusion of GSO and 2D OTSU

More Information
  • Received Date: February 06, 2021
  • Revised Date: March 21, 2021
  • Available Online: May 28, 2021
  • Aiming at the problem of under-segmentation or over-segmentation in the fault area caused by the shortcomings of more time-consuming, low accuracy of segmentation and mis-segmentation in the multi-threshold segmentation of infrared images in electrical equipment fault diagnosis and location based on the two-dimensional (2D) OTSU image segmentation algorithm, an improved fusion algorithm of glowworm swarm optimization (GSO) and 2D OTSU was proposed to improve the real-time and accuracy of multi-threshold segmentation of infrared images for electrical equipment. In the optimization process, the local optimization was extended to the global optimization, and the nonlinear degressive step size and the new shifting strategy were introduced to optimize and improve the GSO. The experimental results show that the proposed fusion algorithm is more accurate than 2D OTSU and unimproved GSO with 2D OTSU fusion algorithm to segment the image abnormal area of operational electrical equipment in segmentation results, and the segmentation speed can be improved by 19 times and 1.28 times, which lays a foundation for the effective identification and location of early fault in infrared images.
  • [1]
    邹辉, 黄福珍. 基于FAsT-Match算法的电力设备红外图像分割[J]. 红外技术,2016,38(1):21-27. doi: 10.11846/j.issn.1001_8891.201601004

    ZOU Hui, HUANG Fuzhen. Infrared image segmentation for electrical equipment based on FAsT-match algorithm[J]. Infrared Technology,2016,38(1):21-27. doi: 10.11846/j.issn.1001_8891.201601004
    [2]
    韦强. 红外技术在电力设备状态检修故障诊断中的应用[J]. 机械研究与应用,2011,24(1):78-81. doi: 10.3969/j.issn.1007-4414.2011.01.032

    WEI Qiang. Brief talk on the application of infrared technique in the fault diagnosis of power equipment condition- based maintenance[J]. Mechanical Research & Application,2011,24(1):78-81. doi: 10.3969/j.issn.1007-4414.2011.01.032
    [3]
    顾鹏程, 黄福珍. 基于改进Chan-Vese模型的电力设备红外图像分割[J]. 计算机工程与应用,2017,53(10):193-196. doi: 10.3778/j.issn.1002-8331.1512-0255

    GU Pengcheng, HUANG Fuzhen. Power equipment infrared image segmentation based on improved Chan-Vese model[J]. Computer Engineering and Applications,2017,53(10):193-196. doi: 10.3778/j.issn.1002-8331.1512-0255
    [4]
    王启银, 薛建东, 任新辉. 一种自适应的变电站设备红外图像分割方法[J]. 红外技术,2016,38(9):770-773. doi: 10.11846/j.issn.1001_8891.201609010

    WANG Qiyin, XUE Jiandong, REN Xinhui. An adaptive segmentation method of substation equipment infrared image[J]. Infrared Technology,2016,38(9):770-773. doi: 10.11846/j.issn.1001_8891.201609010
    [5]
    郝玉然. 基于群智能算法的红外图像分割研究[D]. 郑州: 华北水利水电大学, 2019.

    HAO Yuran. Research on infrared image segmentation based on swarm intelligence algorithm[D]. Zhengzhou: North China University of Water Resources and Electric Power, 2019.
    [6]
    刘晓康, 万曦, 涂文超, 等. 基于红外可见光图像配准的电力设备分割算法[J]. 计算机与现代化,2020(8):26-30. doi: 10.3969/j.issn.1006-2475.2020.08.005

    LIU Xiaokang, WAN Xi, TU Wenchao, et al. Power equipment segmentation algorithm based on infrared and visible images registration[J]. Computer and Modernization,2020(8):26-30. doi: 10.3969/j.issn.1006-2475.2020.08.005
    [7]
    范立南, 胡向丽, 孙申申. 基于OTSU算法和带通滤波器的毛玻璃型肺结节检测[J]. 沈阳大学学报(自然科学版),2012,24(6):43-46.

    FAN Linan, HU Xiangli, SUN Shenshen. Detection of ground glass opacity nodule based on OTSU algorithm and band-pass filter[J]. Journal of Shenyang University (Natural Science),2012,24(6):43-46.
    [8]
    周晨航, 田力威, 赵宏伟. 基于改进萤火虫算法的二维Otsu图像分割法[J]. 沈阳大学学报(自然科学版),2016,28(1):45-50.

    ZHOU Chenhang, TIAN Liwei, ZHAO Hongwei. Image thresholding segmentation with 2D otsu based on improved firefly algorithm[J]. Journal of Shenyang University (Natural Science),2016,28(1):45-50.
    [9]
    KRISHNANAND K N, GHOSE D. Detection of multiple source locations using a glowworm metaphor with applications to collective robotics[C]. [s.l.]: IEEE, 2005: 84-91.
    [10]
    刘鑫晶, 刘彦隆, 徐鑫鑫. 细胞膜机制萤火虫算法优化多阈值OTSU图像分割[J]. 小型微型计算机系统,2020,41(2):410-415. doi: 10.3969/j.issn.1000-1220.2020.02.031

    LIU Xinjing, LIU Yanlong, XU Xinxin. Optimization of multi-threshold OTSU image segmentation by glowworm swarm algorithm with cell membrane mechanism[J]. Minicomputer System,2020,41(2):410-415. doi: 10.3969/j.issn.1000-1220.2020.02.031
    [11]
    王玉萍. 融合改进直方图PDE和二维Tsallis熵多阈值SAR分割[J]. 应用光学,2018,39(6):839-848.

    WANG Yuping. Multi-threshold SAR segmentation based on improved histogram PDE and two-dimensional Tsallis entropy[J]. Journal of Applied Optics,2018,39(6):839-848.
    [12]
    毛肖, 和丽芳, 王庆平. 基于改进萤火虫优化算法的多阈值彩色图像分割[J]. 计算机科学, 2017, 44(增刊1): 206-211.

    MAO Xiao, HE Lifang, WANG Qingping. Multilevel color image segmentation based on improved glowworm swarm optimization algorithm[J]. Computer Science, 2017, 44(S1): 206-211.
    [13]
    KRISHNANAND K N, GHOSE D. Glowworm swarm optimisation: a new method for optimising multi-modal functions[J]. International Journal of Computational I,2009,1(1):93-119.
    [14]
    陈贵敏, 贾建援, 韩琪. 粒子群优化算法的惯性权值递减策略研究[J]. 西安交通大学学报,2006(1):53-56. doi: 10.3321/j.issn:0253-987X.2006.01.013

    CHEN Guimin, JIA Jianyuan, HAN Qi. Study on the strategy of decreasing inertia weight in particle swarm optimization algorithm[J]. Journal of Xi'an Jiaotong University,2006(1):53-56. doi: 10.3321/j.issn:0253-987X.2006.01.013
    [15]
    KAIPA K N, GHOSE D. Glowworm swarm optimization: algorithm development[M]. Switzerland: Springer International Publishing, 2017: 21-56.
  • Related Articles

    [1]MA Dazhi, YU Binchao, ZHANG Yanze, LIU Wei, YUE Yi, YANG Jizhi, CHEN Qintao. Measurement system of large-scale high reflective component based on binocular vision[J]. Journal of Applied Optics, 2021, 42(4): 577-585. DOI: 10.5768/JAO202142.0401002
    [2]WANG Congzheng, HU Song, FENG Chang, GAO Chunming. Deformation detection system of fuel assembly based on underwater binocular vision[J]. Journal of Applied Optics, 2019, 40(2): 246-252. DOI: 10.5768/JAO201940.0202001
    [3]Wang Jing, Li Shuangjiang, Tian Shizhu. Application of binocular stereo vision technology in structural test[J]. Journal of Applied Optics, 2018, 39(6): 821-826. DOI: 10.5768/JAO201839.0601008
    [4]He Wenjun, Wang Jiake, Fu Yuegang, Mo Shijun. On-line measurement system of high voltage insulator based on binocular stereo vision[J]. Journal of Applied Optics, 2018, 39(4): 528-535. DOI: 10.5768/JAO201839.0403003
    [5]Xiong Xin, Sun Dong-mei, Fan Wen, Xu Hai-peng. Calibration technique of binocular vision measurementsystem using light pen[J]. Journal of Applied Optics, 2015, 36(5): 784-790. DOI: 10.5768/JAO201536.0503004
    [6]Liu Xiao-dong, Hou Jian-wei, Zhu Jia-li, Qiu Wei-gen, Sun Jian-hua. Design for visual comfort of binocular optical system with large exit pupil[J]. Journal of Applied Optics, 2015, 36(1): 15-18. DOI: 10.5768/JAO201536.0101003
    [7]LIN Hong, LIANG Kun, WANG Xin-min, LU jin-jun. Oceanic suspended particles monitoring based on bio-optical algorithm[J]. Journal of Applied Optics, 2011, 32(3): 486-491.
    [8]LI You, ZHANG Heng, LEI Zhi-hui. Detection and tracking of light blobs based on center-surround mechanism of biological vision[J]. Journal of Applied Optics, 2008, 29(2): 283-288.
    [9]LI Jian-ping, LI Dong. Applications of OCT Technique in Developmental Biology[J]. Journal of Applied Optics, 2005, 26(2): 60-64.
    [10]LI Jian-ping, CHEN Bing-quan. Validity of the Diffusion Approximation in Determining the Optical Properties of Biological[J]. Journal of Applied Optics, 2005, 26(1): 20-24.
  • Cited by

    Periodical cited type(5)

    1. 王爽,李克武. 双折射测量系统的弹光调制器原位定标及数据处理研究. 激光杂志. 2025(03): 76-83 .
    2. 刘坤,李克武,王爽,王志斌,张易琨. 弹光调制器动态参数测量与高效驱动匹配研究. 应用光学. 2024(02): 415-421 . 本站查看
    3. 杨军营,韩培高,魏莹莹. 无频响影响的光弹调制器定标新方法. 中国激光. 2024(08): 127-133 .
    4. 刘坤,李克武,李坤钰,王爽,王志斌. 弹光调制器相频特性分析与稳定控制技术. 激光杂志. 2024(07): 36-41 .
    5. 臧晓阳,李克武,王志斌,李坤钰,梁振坤,刘坤. 快轴可调弹光调制器闭环稳定控制研究. 激光与光电子学进展. 2023(07): 329-336 .

    Other cited types(4)

Catalog

    Article views (834) PDF downloads (37) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return