LUO Mingwei, TAN Ligang. Method of passive location based on multi-platform collaborative detection by airborne infrared equipment[J]. Journal of Applied Optics, 2021, 42(3): 392-397. DOI: 10.5768/JAO202142.0301003
Citation: LUO Mingwei, TAN Ligang. Method of passive location based on multi-platform collaborative detection by airborne infrared equipment[J]. Journal of Applied Optics, 2021, 42(3): 392-397. DOI: 10.5768/JAO202142.0301003

Method of passive location based on multi-platform collaborative detection by airborne infrared equipment

More Information
  • Received Date: June 18, 2020
  • Revised Date: March 27, 2021
  • Available Online: April 26, 2021
  • With the rapid development of science and technology, the infrared reconnaissance equipment is widely used in airborne platforms. There is an obvious mismatch in operating distance of infrared sensor and laser sensor in typical airborne infrared equipment, which can't accurately locate the ultra-long distance targets. In order to realize the high precision location of long distance or ultra-long distance targets under the conditions of distance deletion, the method of passive location based on multi-platform collaborative detection was proposed. The simulation results show that the passive location algorithm based on multi-platform collaborative detection can effectively realize the high precision targets location, and the location precision is about 7%R, which is superior to that of traditional TDOA and DOA methods.
  • [1]
    吴晗平. 红外搜索系统[M]. 北京: 国防工业出版社, 2013: 1-38.

    WU Hanping. Infarared search system[M]. Beijing: National Defense Industry Press, 2013: 1-38.
    [2]
    刘晓光. 单/多机空空无源定位误差分析[D]. 长沙: 国防科学技术大学, 2010.

    LIU Xiaoguang. Analysis on the error of single/multiple airborne observer(s) passive localization[D]. Changsha: Graduate School of National University of Defense Technology, 2010.
    [3]
    贾兴江. 运动多站无源定位关键技术研究[D]. 长沙: 国防科学技术大学, 2011.

    JIA Xingjiang. Research on passive location technologies of multiple moving observers[D]. Changsha: Graduate School of National University of Defense Technology, 2011.
    [4]
    赵锦, 芮同林, 邵雷. 一种无源被动雷达时差定位方法及其精度研究[J]. 现代防御技术,2016,44(1):161-167. doi: 10.3969/j.issn.1009-086x.2016.01.028

    ZHAO Jin, REN Tonglin, SHAO Lei. A time difference location method for passive radar and its accuracy[J]. Modern Defence Technology,2016,44(1):161-167. doi: 10.3969/j.issn.1009-086x.2016.01.028
    [5]
    张杰. 目标辐射源多站无源定位关键技术研究. [D]. 南京: 解放军信息工程大学, 2015.

    ZHANG Jie. Multi-station passive localization technology based on radiation source[D]. Nanjing: Information Engineering University, 2011.
    [6]
    李海静, 王立刚. 远程空空导弹机弹协同无源定位技术研究[J]. 现代防御技术,2016,44(1):17-21.

    LI Haijing, WANG Ligang. Passive location by aircraft-missile cooperation for long-range air to air missile[J]. Modern Defence Technology,2016,44(1):17-21.
    [7]
    金光. 机载光电跟踪测量的目标定位误差分析和研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2001.

    JIN Guang. Aircraft-borne photo electricity track survey localization of target error analysis and research[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2001.
    [8]
    王家骐, 金光, 颜昌翔. 机载光电跟踪测量设备的目标定位误差分析[J]. 光学精密工程,2005,13(2):105-116. doi: 10.3321/j.issn:1004-924X.2005.02.001

    WANG Jiaqi, JIN Guang, YAN Changxiang. Orientation error analysis of airborne optical-electric tracking and measuring device[J]. Optics and precision Engineering,2005,13(2):105-116. doi: 10.3321/j.issn:1004-924X.2005.02.001
    [9]
    郝振兴, 罗继勋, 胡朝晖, 等. 红外探测与追踪的双机被动定位模型[J]. 探测与控制学报,2016,38(1):28-32.

    HAO Zhenxing, LUO Jixun, HU Chaohui, et al. Two-fighter passive location model for infrared search and track[J]. Journal of Detection & Control,2016,38(1):28-32.
    [10]
    刘晶红, 孙辉, 张葆, 等. 航空光电成像平台的目标自主定位[J]. 光学 精密工程,2007,15(8):1305-1310.

    LIU Jinghong, SUN Hun, ZHANG Bao, et al. Target self-determination orientation based on aerial photoelectric platform[J]. Optics and precision Engineering,2007,15(8):1305-1310.
    [11]
    费业泰. 误差理论与数据处理[M]. 北京: 机械工业出版社, 2000.

    FEI Yetai. The theory of error and data processing[M]. Beijing: China Machine Press, 2000.
    [12]
    李东海. 影响无源定位精度的多种误差原因分析[J]. 现代雷达,2016,38(5):4-8.

    LI Donghai. Analysis of multi-error influence on passive orientation precision[J]. Modern Radar,2016,38(5):4-8.
    [13]
    宋徽. 多站无源定位技术的研究[D]. 南京: 南京理工大学, 2007.

    SONG Hui. Research on multi-station passive location technology[D]. Nanjing: Nanjing University of Science and Technology, 2007.
    [14]
    黄河, 郭杰, 张锦春. 对空中运动目标的时差定位精度影响因素分析[J]. 航天电子对抗,2010,26(3):41-43. doi: 10.3969/j.issn.1673-2421.2010.03.012

    HUANG He, GUO Jie, ZHANG Jinchun. Affect factor analyze towards the location precision of the air movement target[J]. Aerospace Electronic Warfare,2010,26(3):41-43. doi: 10.3969/j.issn.1673-2421.2010.03.012
    [15]
    翁志汉. 基于无源多传感器的多目标定位跟踪技术的研究[D]. 成都: 电子科技大学, 2014.

    WENG Zhihan. Research on location and tracking technology of multi-target based on passive multi-sensor[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
    [16]
    江晶, 吴卫华. 运动传感器目标跟踪技术[M]. 北京: 国防工业出版社, 2017.

    JIANG Jing, WU Weihua. Target tracking technology for moving sensors[M]. Beijing: National Defense Industry Press, 2017.
  • Related Articles

    [1]Liu Qi, Chen Shanyong. Multi wavelength displacement interferometry based on square wave phase modulation[J]. Journal of Applied Optics.
    [2]LI Kewu, WANG Shuang. Calibration and stability control for photoelastic modulator using feedback optical path[J]. Journal of Applied Optics, 2022, 43(5): 935-942. DOI: 10.5768/JAO202243.0503002
    [3]ZHENG Xinbo, ZHANG Xuan, LUAN Lin, HONG Hanyu. Large angle range beam scanning control based on crystal spatial light modulator[J]. Journal of Applied Optics, 2020, 41(4): 816-821. DOI: 10.5768/JAO202041.0409803
    [4]WANG Lin, HAN Xu, FU Yanjun, HUANG Chunzhi, SHI Yaoqun. Fast phase unwrapping algorithm for 3D measurement[J]. Journal of Applied Optics, 2019, 40(2): 271-277. DOI: 10.5768/JAO201940.0202005
    [5]Wang Yi, Liu Huiyan, Song Baogen. Three dimensional shape restoration method with parallellight interference projection[J]. Journal of Applied Optics, 2017, 38(5): 798-803. DOI: 10.5768/JAO201738.0503004
    [6]Zhang Yongtao, Wang Yize, Wang Yi, Song Zhiwei. Effect of electrooptic material modulation error on parallel beam interference projection[J]. Journal of Applied Optics, 2016, 37(2): 235-239. DOI: 10.5768/JAO201637.0203002
    [7]Shang Zhong-yi, Li Wei-xian, Dong Ming-li, Duan Liang-jun. 3D shape measurement system based on fringe projection in 4-step phase shifting[J]. Journal of Applied Optics, 2015, 36(4): 584-589. DOI: 10.5768/JAO201536.0403005
    [8]LI Si-zhong, YU Yun-qi, CHEN Jing, GUO Jia. System for parallelism detection of multi-spectrum optical axes[J]. Journal of Applied Optics, 2013, 34(4): 644-647.
    [9]YUAN Xiao-feng, PU Dong-lin, SHEN Su, CHEN Lin-sen. Phase modulation properties of digital micromirror device in UV beam[J]. Journal of Applied Optics, 2012, 33(4): 788-792.
    [10]DONG Yi, NI Yan-hui, HONG Hua, ZHAO Shang-hong, TIAN Xiao-fei. Effect of nonlinear phase noise on performance of DQPSK modulation system[J]. Journal of Applied Optics, 2012, 33(1): 220-223.
  • Cited by

    Periodical cited type(2)

    1. 马玉芳,桑杰,白翠梅. 基于振幅光栅的数字全息光学成像系统. 激光杂志. 2020(09): 165-168 .
    2. 李小燕,文永富,程灏波,吴恒宇,王华英. 基于立方体分光棱镜的干涉投影傅里叶变换轮廓术. 光学学报. 2019(04): 225-233 .

    Other cited types(0)

Catalog

    Article views (664) PDF downloads (60) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return