Wang Yi, Liu Huiyan, Song Baogen. Three dimensional shape restoration method with parallellight interference projection[J]. Journal of Applied Optics, 2017, 38(5): 798-803. DOI: 10.5768/JAO201738.0503004
Citation: Wang Yi, Liu Huiyan, Song Baogen. Three dimensional shape restoration method with parallellight interference projection[J]. Journal of Applied Optics, 2017, 38(5): 798-803. DOI: 10.5768/JAO201738.0503004

Three dimensional shape restoration method with parallellight interference projection

More Information
  • Received Date: June 15, 2017
  • Revised Date: July 23, 2017
  • In traditional Fourier transform profilometry, the astigmatism projection is used and 4 constraints are needed to obtain accurate mapping relationship between phase and height. Moreover, the phase nonlinear quadratic error caused by astigmatic projection can also reduce the topographic recovery accuracy. In order to reduce the influence of phase nonlinearity in less restricted conditions, a universal model based on parallel optical interference projection was established. The reference plane phase under the parallel optical interference projection changes linearly along x-axis, the phase distribution is more accurate than the astigmatic projection or oblique projection. The restoration of the measured object under astigmatism and parallel light projection was compared and analyzed. The experimental results show that the new model has high flexibility and operability under less restricted conditions, and the recovery accuracy is good, the relative error is 1.1%.
  • [1]
    Takeda M, Mutoh K. Fourier transform profilometry for the automatic measurement 3D object shapes[J]. Applied Optics, 1983, 22(24):3977-3982. doi: 10.1364/AO.22.003977
    [2]
    尚忠义, 李伟仙, 董明利, 等.基于四步相移光栅投影的三维形貌测量系统[J].应用光学, 2015, 36(4):584-589. http://d.old.wanfangdata.com.cn/Periodical/yygx201504015

    Shang Zhongyi, Li Weixian, Dong Mingli, et al. 3D shape measurement system based on fringe projection profilometry in 4-step phase shifting[J]. Journal of Applied Optics, 2015, 36(4):584-589. http://d.old.wanfangdata.com.cn/Periodical/yygx201504015
    [3]
    吴双卿, 张引, 张三元, 等.傅里叶变换轮廓术物体三维形貌测量的系统分析及其坐标校准方法[J].光学学报, 2009, 29(10):2780-2785. http://d.old.wanfangdata.com.cn/Periodical/gxxb200910023

    Wu Shuangqing, Zhang Yin, Zhang Sanyuan, et al. Analysis of three-dimensional measurement system and the coordinates calibration in Fourier transform profilometry[J]. Acta Optica Sinica, 2009, 29(10):2780-2785. http://d.old.wanfangdata.com.cn/Periodical/gxxb200910023
    [4]
    肖焱山, 曹益平, 武迎春.条纹投影轮廓术中新的相位高度映射算法[J].中国激光, 2011, 38(2):188-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201112035

    Xiao Yanshan, Cao Yiping, Wu Yingchun. A new phase-to-height mapping algorithm in fringe projection profilometry[J]. Chinese Journal of Lasers, 2011, 38(2):188-194. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201112035
    [5]
    毛先富, 陈文静, 苏显渝.傅里叶变换轮廓术新理论研究[J].中国激光, 2007, 34(1):99-104. http://d.old.wanfangdata.com.cn/Periodical/zgjg200701018

    Mao Xianfu, Chen Wenjing, Su Xianyu. Analysis on an improved Fourier transform profilometry[J]. Chinese Journal of Lasers, 2007, 34(1):99-104. http://d.old.wanfangdata.com.cn/Periodical/zgjg200701018
    [6]
    文永富, 苏显渝, 张启灿.傅里叶变换轮廓术中一种普适的计算公式和系统标定方法[J].中国激光, 2009, 36(8):2094-2098. http://d.old.wanfangdata.com.cn/Periodical/zgjg200908035

    Wen Yongfu, Su Xianyu, Zhang Qican. Universal calculation formula and system calibration method in Fourier transform profilometry[J]. Chinese Journal of Lasers, 2009, 36(8):2094-2098. http://d.old.wanfangdata.com.cn/Periodical/zgjg200908035
    [7]
    Wen Y F, Li S K, Cheng H B, et al. Universal calculation formula and calibration method in Fourier transform profilometry[J]. Applied Optics, 2010, 49(34):6563-6569. doi: 10.1364/AO.49.006563
    [8]
    邓勇, 陈康, 李继扬.基于正交偏振双纵模的氦氖激光器纳米测尺系统[J].应用光学, 2017, 38(2):316-320. http://d.old.wanfangdata.com.cn/Periodical/yygx201702028

    Deng Yong, Chen Kang, Li Jiyang. He-Ne laser nanometer ruler system based on orthogonal polarization double longitudinal mode[J]. Journal of Applied Optics, 2017, 38(2):316-320. http://d.old.wanfangdata.com.cn/Periodical/yygx201702028
    [9]
    张湧涛, 王祎泽, 王一, 等.电光材料调制误差对平行光束干涉投影的影响[J].应用光学, 2016, 37(2):235-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201602015

    Zhang Yongtao, Wang Yize, Wang Yi, et al. Effect of electro-optic material modulation error on parallel beam interference projection[J]. Journal of Applied Optics, 2016, 37(2):235-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yygx201602015
    [10]
    范琦, 王云飞, 杨百愚, 等.基于相位恢复的光学元件面形检测技术研究[J].应用光学, 2015, 36(2):242-246. http://d.old.wanfangdata.com.cn/Periodical/yygx201502013

    Fan Qi, Wang Yunfei, Yang Baiyu, et al. Testing optical surface with phase recovery[J]. Journal of Applied Optics, 2015, 36(2):242-246. http://d.old.wanfangdata.com.cn/Periodical/yygx201502013
    [11]
    孙宇臣, 葛宝臻, 张以谟.物体三维信息测量技术综述[J].光电子·激光, 2004, 15(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/gdzjg200402031

    Sun Yuchen, Ge Baozhen, Zhang Yimo. Review for the 3D information measuring technology[J]. Journal of Optoelectronics Laser, 2004, 15(2):248-254. http://d.old.wanfangdata.com.cn/Periodical/gdzjg200402031
    [12]
    Zappa E, Busca G. Fourier transform profilometry calibration based on an exhaustive geometric model of the system[J]. Optics and Lasers in Engineering, 2009, 47(7):754-767. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8f2649371723a29245e0a0bff5d5c1f5
    [13]
    Leah M, Wang Y J, Zhang S. Accurate calibration for 3D shape measurement system using a binary defocusing technique[J]. Optics and Lasers in Engineering, 2013, 51(5):514-519. doi: 10.1016/j.optlaseng.2012.10.015
    [14]
    安冬, 达飞鹏, 盖绍彦, 等.新的基于条纹投影轮廓测量的系统标定方法[J].应用光学, 2014, 35(1):81-84. http://d.old.wanfangdata.com.cn/Periodical/yygx201401016

    An Dong, Da Feipeng, Gai Shaoyan, et al. New system calculation method based on fringe projection profilometry[J]. Journal of Applied Optics, 2014, 35(1):81-84. http://d.old.wanfangdata.com.cn/Periodical/yygx201401016
  • Related Articles

    [1]TAN Ligang, WEI Meiting, LI Jie, LUO Mingwei. Design and simulation of 0.2 μm~20 μm ultra-wide spectrum metamaterial absorption structure[J]. Journal of Applied Optics, 2024, 45(5): 903-915. DOI: 10.5768/JAO202445.0501004
    [2]ZHAO Ming, WANG Tianshu. Wide spectrum Yb-doped Figure-9 fiber laser cavity based on dispersion compensation[J]. Journal of Applied Optics, 2024, 45(4): 834-840. DOI: 10.5768/JAO202445.0407001
    [3]WU Yuting, LIN Zhiqiang, WANG Min. Design of 15 mm~300 mm wide-spectrum zoom optical system[J]. Journal of Applied Optics, 2023, 44(3): 491-499. DOI: 10.5768/JAO202344.0301004
    [4]SI Changtian, YANG Lei, GUO Chengxiang, SHI Tianyi, XIE Hongbo. Ultraviolet relay optical system with wide spectrum based on diffractive elements[J]. Journal of Applied Optics, 2023, 44(3): 476-483. DOI: 10.5768/JAO202344.0301002
    [5]LUO Rui, LIANG Xiuling. Design of large-aperture and wide-spectrum zoom lens[J]. Journal of Applied Optics, 2022, 43(5): 839-845. DOI: 10.5768/JAO202243.0501002
    [6]YE Jingfei, ZHU Runhui, MA Mengcong, DING Tianyu, SONG Zhenzhen, CAO Zhaolou. Design of UV optical system with wide ultraviolet spectrum and large relative aperture[J]. Journal of Applied Optics, 2021, 42(5): 761-766. DOI: 10.5768/JAO202142.0501001
    [7]CHEN Jiao, JIAO Ming-yin, CHANG Wei-jun, KANG Wen-li. Optical design of microscopic imaging system for ultraviolet-visiblewide spectrum[J]. Journal of Applied Optics, 2011, 32(2): 195-199.
    [8]WANG Mei-qin, WANG Zhong-hou, BAI Jia-guang. Removing secondary spectrum in wide spectrum optical system[J]. Journal of Applied Optics, 2010, 31(3): 360-364.
    [9]GUO Cheng, WANG Gao-ming, ZHANG Liang-liang, YANG Zhi-wen. Design of wide spectrum low-light-level collimating lens[J]. Journal of Applied Optics, 2009, 30(2): 199-201.
    [10]TAN Yu, ZHAO Xing-mei. Coating of Beamsplitting Film System Working in aUltra Wide Spectral Range[J]. Journal of Applied Optics, 2005, 26(4): 53-55.
  • Cited by

    Periodical cited type(21)

    1. 赵涵卓,丁宇航,张宗华,王晨,张昂,孟召宗,肖艳军,高楠. 条纹投影测量系统标定方法研究. 河北工业大学学报. 2023(03): 17-28 .
    2. 王红平,刘鑫,赵世辰,王宇,王磊. 基于缺失点云的飞机表面锪孔质量检测. 光子学报. 2022(12): 203-215 .
    3. 李辰,刘建明,何晴. 一种基于连续相位优化的三维形貌测量方法. 现代电子技术. 2021(05): 61-65 .
    4. 胥劲,张启灿,薛俊鹏,刘元坤. 手机屏显靶标用于标定小视场双目三维测量系统. 光学与光电技术. 2021(02): 55-63 .
    5. 何景宜,高允珂,刘姗,孙长森. 检测印刷电路板组件的光栅投影镜头设计. 光学与光电技术. 2021(03): 108-114 .
    6. 刘洋,潘娅,罗玉琴. 一种逐周期条纹背景自适应去除算法. 计算机测量与控制. 2021(11): 148-153 .
    7. 冯维,汤少靖,赵晓冬,赵大兴. 基于自适应条纹的高反光表面三维面形测量方法. 光学学报. 2020(05): 119-127 .
    8. 李承杭,薛俊鹏,郎威,张启灿. 基于相位映射的双目视觉缺失点云插补方法. 光学学报. 2020(01): 260-269 .
    9. 王晨,张宗华,丁宇航,赵涵卓,张昂,孟召宗,肖艳军,高楠. 基于立体标靶的双目系统标定研究. 光学技术. 2020(03): 322-329 .
    10. 张娟娟,沈小渝. 基于三维投影矩阵的生产流水线对接系统平台构建. 食品与机械. 2019(10): 65-69+74 .
    11. 陈诚,张宏儒,陈少轩,刘冰,张凯. 直线运动机构三维角误差同步测量方法研究. 仪器仪表学报. 2019(10): 145-151 .
    12. 王柳,陈超,高楠,张宗华. 基于自适应条纹投影的高反光物体三维面形测量. 应用光学. 2018(03): 373-378 . 本站查看
    13. 顾超,穆平安. 基于面结构光的双目立体匹配算法研究. 电子科技. 2017(01): 16-18+22 .
    14. 胡天正,侯少博. 石窟建筑三维数字图像形貌拼接方法优化仿真. 计算机仿真. 2017(12): 250-253+330 .
    15. 王静强,刘桂华,赵碧霞,王玉玫. 基于伪随机阵列和正弦光栅的结构光标定. 计算机应用与软件. 2017(12): 116-121 .
    16. 张西宁,张海星,吴婷婷. 一种转动容器中磁流体液表面形貌测量方法. 西安交通大学学报. 2017(01): 103-108 .
    17. 蒋艳鹏,吴思进,杨连祥. 形貌与微变形全场光学同时测量方法. 应用光学. 2017(01): 67-71 . 本站查看
    18. 曾灼环,黄超,屈国丽,伏燕军. 基于二进制条纹加相位编码条纹离焦投影的三维测量方法. 应用光学. 2017(05): 790-797 . 本站查看
    19. 王一,刘会艳,宋宝根. 平行光干涉投影三维形貌恢复方法. 应用光学. 2017(05): 798-803 . 本站查看
    20. 丁一飞,王永红,胡悦,黄安琪,但西佐. 样本块匹配光栅投影阶梯标定方法. 中国测试. 2016(08): 7-12 .
    21. 张湧涛,王祎泽,王一,宋志伟. 电光材料调制误差对平行光束干涉投影的影响. 应用光学. 2016(02): 235-239 . 本站查看

    Other cited types(24)

Catalog

    Article views (943) PDF downloads (86) Cited by(45)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return