XU Jianqiao, WU Jun, CHEN Xiangcheng, WU Danchao, LI Bing. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics, 2021, 42(2): 327-333. DOI: 10.5768/JAO202142.0203006
Citation: XU Jianqiao, WU Jun, CHEN Xiangcheng, WU Danchao, LI Bing. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics, 2021, 42(2): 327-333. DOI: 10.5768/JAO202142.0203006

Bearing defects detection based on standardized sample split

More Information
  • Received Date: December 27, 2020
  • Revised Date: February 07, 2021
  • Available Online: February 23, 2021
  • Surface defects seriously affect the quality and service life of bearings. In recent years, deep learning has played an important role in defects detection, but for bearing detection, the collection of defects samples is time-consuming and labor-consuming. The bearing inner diameter was chosen as the detection object, a method of standardized sample split based on the symmetry of bearing was proposed, which could greatly increase the number of samples. Different sample processing methods were used respectively, and then the bearing defects detection model was trained by ResNet network to carry out several comparative experiments. The experimental results show that the detection effect is worse when the original images are directly used for training, and the area under the curve (AUC) of the model is only 0.558 0; after the samples are split, the trained model detection effect is better, and the model AUC is improved to 0.632 6; after the samples are corrected by four point perspective transformation, the detection effect is better, and the model AUC is increased to 0.661 3; after the original images are corrected by perspective transformation and the standardized samples are split, the detection effect is the best, and the model AUC is increased to 0.849 6.
  • [1]
    陈向伟, 张学军, 关山. 基于计算机视觉的微小轴承表面缺陷检测[J]. 机床与液压,2009,37(9):130-132. doi: 10.3969/j.issn.1001-3881.2009.09.044

    CHEN Xiangwei, ZHANG Xuejun, GUAN Shan. Inspection of surface defect of micro bearing based on computer vision[J]. Machine Tool & Hydraulics,2009,37(9):130-132. doi: 10.3969/j.issn.1001-3881.2009.09.044
    [2]
    陈龙, 侯普华, 王进, 等. 轴承表面缺陷类型识别算法[J]. 计算机应用研究,2015,32(5):1549-1553. doi: 10.3969/j.issn.1001-3695.2015.05.068

    CHEN Long, HOU Puhua, WANG Jin, et al. Recognition algorithm on bearing surface defect type[J]. Application Research of Computers,2015,32(5):1549-1553. doi: 10.3969/j.issn.1001-3695.2015.05.068
    [3]
    陈昊, 张奔, 黎明, 等. 基于图像光流的轴承滚子表面缺陷检测[J]. 仪器仪表学报,2018,39(6):198-206.

    CHEN Hao, ZHANG Ben, LI Ming, et al. Surface defect detection of bearing roller based on image optical flow[J]. Chinese Journal of Scientific Instrument,2018,39(6):198-206.
    [4]
    张明辉, 王建武, 张文, 等. 机器视觉在轴承检测中的研究现状及发展趋势[J]. 机床与液压,2019,47(23):183-189.

    ZHANG Minghui, WANG Jianwu, ZHANG Wen, et al. Research status and development trend of machine vision in bearing inspection[J]. Machine Tool & Hydraulics,2019,47(23):183-189.
    [5]
    韩志玮, 高美凤. 刹车片表面缺陷的图像检测方法[J]. 应用光学,2020,41(3):538-547.

    HAN Zhiwei, GAO Meifeng. Image detection method for surface defects of brake pads[J]. Journal of Applied Optics,2020,41(3):538-547.
    [6]
    涂宏斌, 周新建. 基于支持向量机的轴承表面缺陷检测[J]. 现代制造工程,2006(9):90-92. doi: 10.3969/j.issn.1671-3133.2006.09.030

    TU Hongbin, ZHOU Xinjian. Bearing defects detection based on support vector machines[J]. Modern Manufacturing Engineering,2006(9):90-92. doi: 10.3969/j.issn.1671-3133.2006.09.030
    [7]
    吴义权. 轴承外圈表面缺陷检测与分类方法研究[D]. 成都: 电子科技大学, 2019.

    WU Yiquan. Research on detection and classification of bearing outer ring surface defects[D]. Chengdu: University of Electronics Science and Technology of China, 2019.
    [8]
    王恒迪, 郝琳博, 杨建玺, 等. 轴承外观缺陷设计与实现[J]. 现代制造工程,2018(5):156-161.

    WANG Hengdi, HAO Linbo, YANG Jianxi, et al. Design and implementation of detecting system for defects of bearing surface[J]. Modern Manufacturing Engineering,2018(5):156-161.
    [9]
    SHEN H, LI S, GU D, et al. Bearing defect inspection based on machine vision[J]. Measurement,2012,45(4):719-733. doi: 10.1016/j.measurement.2011.12.018
    [10]
    鲍刚. 微小精密轴承表面缺陷检测关键技术[D]. 西安: 西安工业大学, 2016. .

    BAO Gang. Key technologies of surface defect detection of the tiny precision bearings[D]. Xi'An: Xi'An Technolgical University, 2016.
    [11]
    王昆. 图像融合技术在微小轴承表面缺陷检测中的应用[D]. 长春: 吉林大学, 2011.

    WANG Kun. Application of image fusion in detection of micro bearing surface defect[D]. Changchun: Jilin University, 2011.
    [12]
    陶青平, 吴锡生. 快速检测轴承表面缺陷方法的研究[J]. 微电子学与计算机,2011,28(10):98-100, 104.

    TAO Qingping, WU Xisheng. Rapid detection method of the bearing surface defects[J]. Microelectronics & Computer,2011,28(10):98-100, 104.
    [13]
    刘怀广, 刘安逸, 周诗洋, 等. 基于深度神经网络的太阳能电池组件缺陷检测算法研究[J]. 应用光学,2020,41(2):327-336.

    LIU Huaiguang, LIU Anyi, ZHOU Shiyang, et al. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics,2020,41(2):327-336.
    [14]
    PENG G, ZHANG Z, LI W. Computer vision algorithm for measurement and inspection of O-rings[J]. Measurement,2016,94:828-836. doi: 10.1016/j.measurement.2016.09.012
    [15]
    谷静, 张可帅, 朱漪曼. 基于卷积神经网络的焊缝缺陷图像分类研究[J]. 应用光学,2020,41(3):531-537.

    GU Jing, ZHANG Keshuai, ZHU Yiman. Research on weld defect image classification based on convolutional neural network[J]. Journal of Applied Optics,2020,41(3):531-537.
  • Cited by

    Periodical cited type(6)

    1. 马梦华. 基于边缘提取和曲线拟合的轴承内部缺陷激光检测. 激光杂志. 2024(11): 187-192 .
    2. 王一,龚肖杰,苏皓. 基于改进U-net的金属工件表面缺陷图像分割方法. 应用光学. 2023(01): 86-92 . 本站查看
    3. 杨冬毅,黄丹平,徐佳乐,廖世鹏,于少东. 维度分割法轴承全表面缺陷检测. 计算机工程与应用. 2023(24): 176-184 .
    4. 刘怀广,丁晚成,黄千稳. 基于轻量化卷积神经网络的光伏电池片缺陷检测方法研究. 应用光学. 2022(01): 87-94 . 本站查看
    5. 易焕银,胡光雄,林子其,邱桂茂,刘志明. 一种快速的基于机器视觉的轴承夹齿牙计数与定位方法. 广东交通职业技术学院学报. 2022(01): 30-33 .
    6. 谷峥岩,魏利胜. 基于深度学习网络的轴承工件自动检测. 电子测量与仪器学报. 2021(09): 80-88 .

    Other cited types(1)

Catalog

    Article views (1024) PDF downloads (45) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return