Citation: | XU Jianqiao, WU Jun, CHEN Xiangcheng, WU Danchao, LI Bing. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics, 2021, 42(2): 327-333. DOI: 10.5768/JAO202142.0203006 |
[1] |
陈向伟, 张学军, 关山. 基于计算机视觉的微小轴承表面缺陷检测[J]. 机床与液压,2009,37(9):130-132. doi: 10.3969/j.issn.1001-3881.2009.09.044
CHEN Xiangwei, ZHANG Xuejun, GUAN Shan. Inspection of surface defect of micro bearing based on computer vision[J]. Machine Tool & Hydraulics,2009,37(9):130-132. doi: 10.3969/j.issn.1001-3881.2009.09.044
|
[2] |
陈龙, 侯普华, 王进, 等. 轴承表面缺陷类型识别算法[J]. 计算机应用研究,2015,32(5):1549-1553. doi: 10.3969/j.issn.1001-3695.2015.05.068
CHEN Long, HOU Puhua, WANG Jin, et al. Recognition algorithm on bearing surface defect type[J]. Application Research of Computers,2015,32(5):1549-1553. doi: 10.3969/j.issn.1001-3695.2015.05.068
|
[3] |
陈昊, 张奔, 黎明, 等. 基于图像光流的轴承滚子表面缺陷检测[J]. 仪器仪表学报,2018,39(6):198-206.
CHEN Hao, ZHANG Ben, LI Ming, et al. Surface defect detection of bearing roller based on image optical flow[J]. Chinese Journal of Scientific Instrument,2018,39(6):198-206.
|
[4] |
张明辉, 王建武, 张文, 等. 机器视觉在轴承检测中的研究现状及发展趋势[J]. 机床与液压,2019,47(23):183-189.
ZHANG Minghui, WANG Jianwu, ZHANG Wen, et al. Research status and development trend of machine vision in bearing inspection[J]. Machine Tool & Hydraulics,2019,47(23):183-189.
|
[5] |
韩志玮, 高美凤. 刹车片表面缺陷的图像检测方法[J]. 应用光学,2020,41(3):538-547.
HAN Zhiwei, GAO Meifeng. Image detection method for surface defects of brake pads[J]. Journal of Applied Optics,2020,41(3):538-547.
|
[6] |
涂宏斌, 周新建. 基于支持向量机的轴承表面缺陷检测[J]. 现代制造工程,2006(9):90-92. doi: 10.3969/j.issn.1671-3133.2006.09.030
TU Hongbin, ZHOU Xinjian. Bearing defects detection based on support vector machines[J]. Modern Manufacturing Engineering,2006(9):90-92. doi: 10.3969/j.issn.1671-3133.2006.09.030
|
[7] |
吴义权. 轴承外圈表面缺陷检测与分类方法研究[D]. 成都: 电子科技大学, 2019.
WU Yiquan. Research on detection and classification of bearing outer ring surface defects[D]. Chengdu: University of Electronics Science and Technology of China, 2019.
|
[8] |
王恒迪, 郝琳博, 杨建玺, 等. 轴承外观缺陷设计与实现[J]. 现代制造工程,2018(5):156-161.
WANG Hengdi, HAO Linbo, YANG Jianxi, et al. Design and implementation of detecting system for defects of bearing surface[J]. Modern Manufacturing Engineering,2018(5):156-161.
|
[9] |
SHEN H, LI S, GU D, et al. Bearing defect inspection based on machine vision[J]. Measurement,2012,45(4):719-733. doi: 10.1016/j.measurement.2011.12.018
|
[10] |
鲍刚. 微小精密轴承表面缺陷检测关键技术[D]. 西安: 西安工业大学, 2016. .
BAO Gang. Key technologies of surface defect detection of the tiny precision bearings[D]. Xi'An: Xi'An Technolgical University, 2016.
|
[11] |
王昆. 图像融合技术在微小轴承表面缺陷检测中的应用[D]. 长春: 吉林大学, 2011.
WANG Kun. Application of image fusion in detection of micro bearing surface defect[D]. Changchun: Jilin University, 2011.
|
[12] |
陶青平, 吴锡生. 快速检测轴承表面缺陷方法的研究[J]. 微电子学与计算机,2011,28(10):98-100, 104.
TAO Qingping, WU Xisheng. Rapid detection method of the bearing surface defects[J]. Microelectronics & Computer,2011,28(10):98-100, 104.
|
[13] |
刘怀广, 刘安逸, 周诗洋, 等. 基于深度神经网络的太阳能电池组件缺陷检测算法研究[J]. 应用光学,2020,41(2):327-336.
LIU Huaiguang, LIU Anyi, ZHOU Shiyang, et al. Research on detection agorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics,2020,41(2):327-336.
|
[14] |
PENG G, ZHANG Z, LI W. Computer vision algorithm for measurement and inspection of O-rings[J]. Measurement,2016,94:828-836. doi: 10.1016/j.measurement.2016.09.012
|
[15] |
谷静, 张可帅, 朱漪曼. 基于卷积神经网络的焊缝缺陷图像分类研究[J]. 应用光学,2020,41(3):531-537.
GU Jing, ZHANG Keshuai, ZHU Yiman. Research on weld defect image classification based on convolutional neural network[J]. Journal of Applied Optics,2020,41(3):531-537.
|
1. |
马梦华. 基于边缘提取和曲线拟合的轴承内部缺陷激光检测. 激光杂志. 2024(11): 187-192 .
![]() | |
2. |
王一,龚肖杰,苏皓. 基于改进U-net的金属工件表面缺陷图像分割方法. 应用光学. 2023(01): 86-92 .
![]() | |
3. |
杨冬毅,黄丹平,徐佳乐,廖世鹏,于少东. 维度分割法轴承全表面缺陷检测. 计算机工程与应用. 2023(24): 176-184 .
![]() | |
4. |
刘怀广,丁晚成,黄千稳. 基于轻量化卷积神经网络的光伏电池片缺陷检测方法研究. 应用光学. 2022(01): 87-94 .
![]() | |
5. |
易焕银,胡光雄,林子其,邱桂茂,刘志明. 一种快速的基于机器视觉的轴承夹齿牙计数与定位方法. 广东交通职业技术学院学报. 2022(01): 30-33 .
![]() | |
6. |
谷峥岩,魏利胜. 基于深度学习网络的轴承工件自动检测. 电子测量与仪器学报. 2021(09): 80-88 .
![]() |