Citation: | LIU Huaiguang, DING Wancheng, HUANG Qianwen. Defects detection method of photovoltaic cells based on lightweightconvolutional neural network[J]. Journal of Applied Optics, 2022, 43(1): 87-94. DOI: 10.5768/JAO202243.0103003 |
The defects in photovoltaic cells affect the service life and power generation efficiency of the entire photovoltaic system. Aiming at the high missed detection rate of weak and small defects in the automatic detection of existing cells, a feature-enhanced lightweight convolutional neural network model was established. The feature enhancement extraction module was designed specifically to improve the extraction ability of weak boundaries. In addition, according to the principle of multi-scale recognition, a small target prediction layer was added to realize multi-scale feature prediction. In the experimental test, the mean average precision (mAP) of the model reaches to 87.55%, which is 6.78 percentage points higher than the traditional model. Moreover, the detection speed reaches to 40 fps, which meets the accuracy and real-time detection requirements.
[1] |
KABIR E, KUMAR P, KUMAR S, et al. Solar energy: potential and future prospects[J]. Renewable & Sustainable Energy Reviews,2018,82:894-900.
|
[2] |
DHIMISH M, HOLMES V, MEHRDADI B, et al. The impact of cracks on photovoltaic power performance[J]. Journal of Science:Advanced Materials and Devices,2017,2(2):199-209. doi: 10.1016/j.jsamd.2017.05.005
|
[3] |
刘怀广, 刘安逸, 周诗洋, 等. 基于深度神经网络的太阳能电池组件缺陷检测算法研究[J]. 应用光学,2020,41(2):327-336. doi: 10.5768/JAO202041.0202006
LIU Huaiguang, LIU Anyi, ZHOU Shiyang, et al. Research on detection algorithm of solar cell component defects based on deep neural network[J]. Journal of Applied Optics,2020,41(2):327-336. doi: 10.5768/JAO202041.0202006
|
[4] |
范程华, 王群京, 曹欣远, 等. 基于信号突变点校正的太阳能电池片缺陷检测方法[J]. 激光与光电子学进展,2020,57(6):246-251.
FAN Chenghua, WANG Qunjing, CAO Xinyuan, et al. Defect detection method for solar cell based on signal catastrophe-points correction[J]. Laser & Optoelectronics Progress,2020,57(6):246-251.
|
[5] |
王宪保, 李洁, 姚明海, 等. 基于深度学习的太阳能电池片表面缺陷检测方法[J]. 模式识别与人工智能,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
WANG Xianbao, LI Jie, YAO Minghai, et al. Solar cells surface defects detection based on deep learning[J]. Pattern Recognition and Artificial Intelligence,2014,27(6):517-523. doi: 10.3969/j.issn.1003-6059.2014.06.006
|
[6] |
陈超, 齐峰. 卷积神经网络的发展及其在计算机视觉领域中的应用综述[J]. 计算机科学,2019,46(3):63-73. doi: 10.11896/j.issn.1002-137X.2019.03.008
CHEN Chao, QI Feng. Review on development of convolutional neural network and its application in computer vision[J]. Computer Science,2019,46(3):63-73. doi: 10.11896/j.issn.1002-137X.2019.03.008
|
[7] |
杨铭, 文斌. 一种改进的YOLOv3-Tiny目标检测算法[J]. 成都信息工程大学学报,2020,35(5):531-536.
YANG Ming, WEN Bin. An improved YOLOv3-Tiny target detection algorithm[J]. Journal of Chengdu University of Information Technology,2020,35(5):531-536.
|
[8] |
LI J Y, SU Z F, GENG J H, et al. Real-time detection of steel strip surface defects based on improved YOLO detection network[J]. IFAC-PapersOnLine,2018,51(21):76-81. doi: 10.1016/j.ifacol.2018.09.412
|
[9] |
QIU Z, WANG S, ZENG Z, et al. Automatic visual defects inspection of wind turbine blades via YOLO-based small object detection approach[J]. Journal of Electronic Imaging,2019,28(4):43023-1-11.
|
[10] |
李文涛, 张岩, 莫锦秋, 等. 基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报,2020,51(s1):1-8. doi: 10.6041/j.issn.1000-1298.2020.S1.001
LI Wentao, ZHANG Yan, MO Jinqiu, et al. Detection of pedestrian and agricultural vehicles in field based on improved YOLOv3-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):1-8. doi: 10.6041/j.issn.1000-1298.2020.S1.001
|
[11] |
ZHANG Y, SHEN Y L, ZHANG J. An improved tiny-yolov3 pedestrian detection algorithm[J]. Optik,2019,183:17-23. doi: 10.1016/j.ijleo.2019.02.038
|
[12] |
JIANG B, LUO R, MAO J, et al. Acquisition of localization confidence for accurate object detection [EB/OL]. [2021-07- 20]. https://arxiv.org/abs/1807.11590.
|
[13] |
徐建桥, 吴俊, 陈向成, 等. 基于规范化样本拆分的轴承缺陷检测[J]. 应用光学,2021,42(2):327-333. doi: 10.5768/JAO202142.0203006
XU Jianqiao, WU Jun, CHEN Xiangcheng, et al. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics,2021,42(2):327-333. doi: 10.5768/JAO202142.0203006
|
[14] |
PARK J H, HWANG H W, MOON J H, et al. Automated identification of cephalometric landmarks: part 1—comparisons between the latest deep-learning methods YOLOV3 and SSD[J]. The Angle Orthodontist,2019,89(6):903-909. doi: 10.2319/022019-127.1
|
[15] |
吴天舒, 张志佳, 刘云鹏, 等. 基于改进SSD的轻量化小目标检测算法[J]. 红外与激光工程,2018,47(7):47-53.
WU Tianshu, ZHANG Zhijia, LIU Yunpeng, et al. A lightweight small object detection algorithm based on improved SSD[J]. Infrared and Laser Engineering,2018,47(7):47-53.
|
[1] | LI Yuyao, PANG Chunying, YANG Yu, SUN Xiaoling. Design of optical system for disposable epidural endoscope[J]. Journal of Applied Optics, 2024, 45(5): 896-902. DOI: 10.5768/JAO202445.0501003 |
[2] | WANG Xiaomeng, CHEN Yu, WANG Chunyan, ZHAO Yiwu, SUN Hao, LIU Huan, ZHANG Tong. Design of optical system for all-weather and panoramic surveillance camera[J]. Journal of Applied Optics, 2023, 44(3): 484-490. DOI: 10.5768/JAO202344.0301003 |
[3] | LIU Xiaoyin, YANG Lei, YANG Tong, SU Xiaoqin, XIE Hongbo. Design and illumination analysis of tiny-spherical microscopic optical system[J]. Journal of Applied Optics, 2023, 44(2): 262-267. DOI: 10.5768/JAO202344.0201004 |
[4] | Hu Bo, Yang Zi-jian, Chen Jiao, Gao Jing, Teng Guo-qi, Zhang Bo, Yu Yue. Assistant alignment lens design for catadioptric infrared optical system[J]. Journal of Applied Optics, 2015, 36(6): 864-867. DOI: 10.5768/JAO201536.0601008 |
[5] | Chen Jiao, Luan Ya-dong, Hu Bo, Wang Ling, Teng Guo-qi, Zhang Bo, Lin Xiao-juan. Optical design of visible and IR spectral catadioptric system[J]. Journal of Applied Optics, 2014, 35(6): 955-959. |
[6] | HAN Jun, LI Xun, WU Ling-ling, LU Shao-jun, YU Xun, ZHAN Chun-lian. Optical system design of grating-based imaging spectrometer[J]. Journal of Applied Optics, 2012, 33(2): 233-239. |
[7] | LIU Jun, WU Xiao-chen. Athermalisation of infrared Cassegrain optical system in missile[J]. Journal of Applied Optics, 2012, 33(1): 175-180. |
[8] | MAO Hong-min, XU Jing, ZHEN Sheng-lai, MA Yu-fen, YU Ben-li. Optical path design for Cassegrain laser transmitting system[J]. Journal of Applied Optics, 2008, 29(2): 216-219. |
[9] | ZHANG Liang. New design method of optical system with dual FOVs[J]. Journal of Applied Optics, 2008, 29(supp): 49-52. |
[10] | DING Xu-ming, XIONG Wang-er, YU Chong-zhen, LIANG Zhi-yi. Optical design of infrared coupling system[J]. Journal of Applied Optics, 2006, 27(5): 409-411. |