XU Zhong, ZHANG Xiliang. Long-distance vibration measurement based on laser frequency-shifted feedback interferometry[J]. Journal of Applied Optics, 2020, 41(6): 1277-1283. DOI: 10.5768/JAO202041.0607001
Citation: XU Zhong, ZHANG Xiliang. Long-distance vibration measurement based on laser frequency-shifted feedback interferometry[J]. Journal of Applied Optics, 2020, 41(6): 1277-1283. DOI: 10.5768/JAO202041.0607001

Long-distance vibration measurement based on laser frequency-shifted feedback interferometry

More Information
  • Received Date: May 11, 2020
  • Revised Date: May 28, 2020
  • Available Online: October 19, 2020
  • Signal detection of weak vibration in long-distance is of great significance in the fields of machine manufacturing, national defense, military, and so on. Aiming at overcoming the shortages of traditional measurement systems, a long-distance vibration measurement system was built based on the solid-state microchip laser frequency-shifted feedback technology. The system sensitivity index, including working distance, incident angle, and non-cooperative objects were further analyzed. The experimental results show that the high-quality acquisition of the weak vibration signal at 100 m distance is achieved, the frequency measurement error is less than 0.1% and the signal-to-noise ratio is still close to 20 dB under an incident angle of ±60° with using paper box as the target. In addition, the system can measure vibration of a variety of non-cooperative targets such as milk powder bags, polyfoams and so on. The system can be used flexibly in mechanical vibration measurement, remote monitoring and other fields, showing great promotional value in engineering applications.
  • [1]
    ROTHBERG S J, ALLEN M S, CASTELLINI P, et al. An international review of laser Doppler vibrometry: making light work of vibration measurement[J]. Optics and Lasers in Engineering,2017,99(10):11-22.
    [2]
    陈文建, 高玮, 孙卫平, 等. 弹载共孔径激光微多普勒目标识别系统研究[J]. 应用光学,2018,39(2):174-179.

    CHEN Wenjian, GAO Wei, SUN Weiping, et al. Research on missile-borne common aperture laser micro-doppler target recognition system[J]. Journal of Applied Optics,2018,39(2):174-179.
    [3]
    ZHU Z G, LI W H, WOLBERG G. Integrating LDV audio and IR video for remote multimodal surveillance[C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)-Workshops. USA: IEEE, 2005: 10-10.
    [4]
    LYU T, GUO J, ZHANG H Y, et al. Acquirement and enhancement of remote speech signals[J]. Optoelectronics Letters,2017,13(4):275-278. doi: 10.1007/s11801-017-7059-9
    [5]
    吕韬, 张合勇, 郭劲, 等. 远距离语音的激光相干获取及增强[J]. 光学精密工程,2017,25(3):569-575. doi: 10.3788/OPE.20172503.0569

    LYU Tao, ZHANG Heyong, GUO Jin, et al. Acquisition and enhancement of remote voice based on laser coherent method[J]. Optics and Precision Engineering,2017,25(3):569-575. doi: 10.3788/OPE.20172503.0569
    [6]
    ZHANG H Y, LYU T, YAN C H, et al. The novel role of arctangent phase algorithm and voice enhancement techniques in laser hearing[J]. Applied Acoustics,2017,126:136-142. doi: 10.1016/j.apacoust.2017.05.024
    [7]
    汪啸. 远距离激光振动检测技术的研究[D]. 成都: 电子科技大学, 2018.

    WANG X. Research on long-distance laser vibration measurement technology[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [8]
    KING P G R, STEWARD G J. Metrology with an optical maser[J]. New Scientist,1963,17(180):14.
    [9]
    WU Y, TAN Y D, ZENG Z L, et al. Note: High- performance He-Ne laser feedback interferometer with birefringence feedback cavity scanned by piezoelectric transducer[J]. Review of Scientific Instruments,2013,84(5):056103. doi: 10.1063/1.4804284
    [10]
    ZHANG S H, ZHANG S L, TAN Y D, et al. Self-mixing interferometry with mutual independent orthogonal polarized light[J]. Optics Letters,2016,41(4):844-846. doi: 10.1364/OL.41.000844
    [11]
    ZHU K Y, GUO B, LU Y Y, et al. Single-spot two-dimensional displacement measurement based on self-mixing interferometry[J]. Optica,2017,4(7):729-735. doi: 10.1364/OPTICA.4.000729
    [12]
    OTSUKA K. Self-mixing thin-slice solid-state laser Doppler velocimetry with much less than one feedback photon per Doppler cycle[J]. Optics Letters,2015,40(20):4603-4606. doi: 10.1364/OL.40.004603
    [13]
    WU S, WANG D H, XIANG R, et al. All-fiber configuration laser self-mixing Doppler velocimeter based on distributed feedback fiber laser[J]. Sensors,2016,16(8):1179. doi: 10.3390/s16081179
    [14]
    ZHENG F S, TAN Y D, LIN J, et al. Study of non-contact measurement of the thermal expansion coefficients of materials based on laser feedback interferometry[J]. Review of Scientific Instruments,2015,86(4):043109. doi: 10.1063/1.4917554
    [15]
    TAN Y D, ZHANG S L, ZHANG S, et al. Response of microchip solid-state laser to external frequency-shifted feedback and its applications[J]. Scientific reports,2013,3:2912. doi: 10.1038/srep02912
    [16]
    OTSUKA K. Long-haul self-mixing interference and remote sensing of a distant moving target with a thin-slice solid-state laser[J]. Optics Letters,2014,39(4):1069-1072. doi: 10.1364/OL.39.001069
    [17]
    吴鹏, 秦水介. 固体微片激光回馈技术在远程振动测量中的研究[J]. 红外与激光工程,2018,47(2):206005-0206005 (6). doi: 10.3788/IRLA201847.0206005

    WU Peng, QIN Shuijie. Study of solid-state microchip laser feedback technology in remote vibration measurement[J]. Infrared and Laser Engineering,2018,47(2):206005-0206005 (6). doi: 10.3788/IRLA201847.0206005
    [18]
    TAN Y D, WANG W P, XU C X, et al. Laser confocal feedback tomography and nano-step height measurement[J]. Scientific Reports,2013,3(1):1-7.
    [19]
    ZHU K Y, CHEN H F, Zhang S L, et al. Frequency-shifted optical feedback measurement technologies using a solid-state microchip laser[J]. Applied Sciences,2018,9(1):109-120. doi: 10.3390/app9010109
    [20]
    WANG Haixian, YE Ai. The influence of the coefficient of atmospheric attenuation to the capability of laser ranging[J]. Ship Science and Technology,2007,29(6):116-119.
  • Related Articles

    [1]LYU Wujun, HAN Sen, XU Jidong, SHEN Yuhang, ZHANG Linghua, YANG Ying, GUO Jingming. Spectrum analysis of low frequency vibration in interferometry[J]. Journal of Applied Optics, 2024, 45(5): 1019-1024. DOI: 10.5768/JAO202445.0503004
    [2]SUN Baoyu, XU Jichen, GU Yan, LIN Jieqiong, LI Jie. Preparation of large-area grating structure by vibration-assisted nanoimprint[J]. Journal of Applied Optics, 2022, 43(1): 124-130. DOI: 10.5768/JAO202243.0105001
    [3]WANG Yan, WANG Keyi, ZHAO Shuai, SHEN Yuan, CAI Bolin, ZHANG Lei. Design and research of light incident angle measuring system based on conical lens[J]. Journal of Applied Optics, 2020, 41(6): 1181-1189. DOI: 10.5768/JAO202041.0602001
    [4]Li Zhi-feng, Zhao Deng-feng, Ma Guo-lu, Zeng Guo-ying, Lu Zhan. Bending and torsion measuring system of rotary parts and it’s uncertainty analysis[J]. Journal of Applied Optics, 2015, 36(5): 778-783. DOI: 10.5768/JAO201536.0503003
    [5]Zhang Yu-ze, Li Li-yan, Zeng Hua-lin, Zhou Yan. Influence of materials-properties of targets on laser voice detection[J]. Journal of Applied Optics, 2014, 35(5): 922-926.
    [6]Liu Dan, Zheng Bin, Guo Hua-ling, Liu Hui, Liu Nai-qiang. Micro-vibration measuring technology based on heterodyne interference[J]. Journal of Applied Optics, 2014, 35(5): 858-861.
    [7]SHANG Ying, LIU Xiao-hui, WANG Chang, ZHAO Wen-an, Lv Jing-sheng, WANG Ying-ying, ZHAO Qing-chao. Fiber optic interferometer flowmeter based on turbulent vibration[J]. Journal of Applied Optics, 2014, 35(1): 168-173.
    [8]LI Duo, WAN Xin-jun, ZHANG Shu-lian. Laser feedback interferometric system for both displacement and absolute distance measurement[J]. Journal of Applied Optics, 2007, 28(4): 496-500.
    [9]WANG Zhao-hui, ZHAO Chang-zheng, CHEN Wen-xin, JIAO Bin-liang. Effect of vibration on intersatellite coherent laser communication[J]. Journal of Applied Optics, 2007, 28(3): 336-340.
    [10]JIA Shu-hai, LI Yi-gui, TAN Yu-shan. A novel DSPI system for vibration quantificational analysis[J]. Journal of Applied Optics, 2007, 28(1): 92-96.
  • Cited by

    Periodical cited type(2)

    1. 朱朝阳,叶伟,彭慧龙,陈昱坤. 倍增层Si浓度对β-FeSi_2/Si红外探测器性能的影响研究. 河南科技. 2025(01): 73-77 .
    2. 方小坤,叶伟,权贝贝,朱朝阳,萧生. Ⅰ型倍增层对异质SAM结构InSb-APD红外探测器性能的影响. 应用光学. 2024(03): 659-664 . 本站查看

    Other cited types(1)

Catalog

    Article views (1502) PDF downloads (62) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return