XU Zhixiang, WANG Zhenggong, HUANG Yimin, WANG Yu. Numerical study on surface defects detection of plate with transition fillet by laser ultrasound[J]. Journal of Applied Optics, 2020, 41(1): 214-219. DOI: 10.5768/JAO202041.0107005
Citation: XU Zhixiang, WANG Zhenggong, HUANG Yimin, WANG Yu. Numerical study on surface defects detection of plate with transition fillet by laser ultrasound[J]. Journal of Applied Optics, 2020, 41(1): 214-219. DOI: 10.5768/JAO202041.0107005

Numerical study on surface defects detection of plate with transition fillet by laser ultrasound

More Information
  • Received Date: March 27, 2019
  • Revised Date: June 16, 2019
  • Available Online: March 30, 2020
  • In order to study the propagation law of laser-excited ultrasonic waves on metal plate with transitional fillet and the method of detecting surface defects, the finite element method was used to simulate the laser ultrasonic phenomenon in the plate, and the propagation process of surface wave in the rounded area and its interaction with defects were analyzed.The numerical result shows that, the laser excites the longitudinal wave, the transverse wave and the Rayleigh wave, and the Rayleigh wave mainly exists on the surface of millimeter magnitude. At the transition fillet, these surface waves are converted in mode, and various surface waves such as direct wave R′ and infrasound source generated wave RR are generated;the waves passing through the transition area are reflected and transmitted at the surface defects, and the position of the defect can be detected by the B-scan. As the depth of the defect increases, the transmission coefficient constantly decreases,and there is a difference in arrival time of about 0.5 μs between the transmitted waves Rt and Rst, which is linearly positively correlated with the depth of the defect. The numerical results provide valuable references for laser ultrasonic detection of plate surface defects with transition fillet.
  • [1]
    沈中华, 袁玲, 张宏超, 等. 固体中的激光超声[M]. 北京: 人民邮电出版社, 2015: 57-68.

    SHEN Zhonghua, YUAN Ling, ZHANG Hongchao, et al. Laser ultrasound in solids[M]. Beijing: Post & Telecom Press, 2015: 57-68.
    [2]
    黄燕杰, 尚建华, 任立红, 等. 用于铝板缺陷无损检测的激光超声有限元模拟研究[J]. 应用光学,2019,40(1):150-156.

    HUANG Yanjie, SHANG Jianhua, REN Lihong, et al. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics,2019,40(1):150-156.
    [3]
    宋潮, 郑宾, 郭华玲, 等. 光源对激光超声信号特性的影响分析[J]. 应用光学,2017,38(3):494-498.

    SONG Chao ,ZHENG Bin, GUO Hualing. Analysis of influence of light source on laser ultrasonic signal[J]. Journal of Applied Optics,2017,38(3):494-498.
    [4]
    李俊燕, 沈中华, 倪晓武, 等. 基于合成孔径聚焦技术的激光超声无损检测方法研究[J]. 中国激光,2018,45(9):0904003. doi: 10.3788/CJL201845.0904003

    LI Junyan, SHEN Zhonghua, NI Xiaowu, et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J]. Chinese Journal of Lasers,2018,45(9):0904003. doi: 10.3788/CJL201845.0904003
    [5]
    MINEO C, CERNIGLIA D, PANTANO A. Numerical study for a new methodology of flaws detection in train axles[J]. Ultrasonics,2014,54(3):841-849. doi: 10.1016/j.ultras.2013.10.008
    [6]
    马健, 赵扬, 郭锐, 等. 激光辐照材料表层温升规律的数值模拟[J]. 激光技术,2013,37(4):455-459. doi: 10.7510/jgjs.issn.1001-3806.2013.04.009

    MA Jian, ZHAO Yang, GUO Rui, et al. Numerical simula-tion of temperature rise of material surface ir-radiated by the laser[J]. Laser Technology,2013,37(4):455-459. doi: 10.7510/jgjs.issn.1001-3806.2013.04.009
    [7]
    XU B Q, SHEN Z H, NI X W, et al. Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system[J]. Optics and Laser Technology,2006,38(3):138-145. doi: 10.1016/j.optlastec.2004.12.002
    [8]
    FRANCISCO H V, BEN D, RACHEL S E. Laser ultrasonic characterisation of branched surface-breaking defects[J]. NDT&E International,2014,68:113-119.
    [9]
    WANG C Y, SUN A, YANG X Y, et al. Numerical simulation of the interaction of laser-generated Rayleigh waves with subsurface cracks[J]. Applied Physics A,2018,124(8):613.
    [10]
    冯湾湾, 金磊, 赵金峰. 激光激发横波作用垂直裂纹侧面后的模式转换[J]. 激光技术,2018,42(4):487-493. doi: 10.7510/jgjs.issn.1001-3806.2018.04.011

    FENG Wanwan, JIN Lei, ZHAO Jinfeng, et al. Mode conversion of laser-excited shear waves interaction with the side of vertical cracks[J]. Laser Technology,2018,42(4):487-493. doi: 10.7510/jgjs.issn.1001-3806.2018.04.011
    [11]
    LIU P P, NAZIRAH A W, SOHN H. Numerical simulation of damage detection using laser- generated ultrasound[J]. Ultrasonics,2016,69:248-258. doi: 10.1016/j.ultras.2016.03.013
    [12]
    李海洋, 李巧霞, 王召巴. 针对金属表面裂纹角度的激光超声检测[J]. 国外电子测量技术,2017,37(2):95-99. doi: 10.3969/j.issn.1002-8978.2017.02.020

    LI Haiyang, LI Qiaoxia, WANG Zhaoba. Laser ultrasonic testing for the angle of surface crack on metal[J]. Foreign Electronic Measurement Technology,2017,37(2):95-99. doi: 10.3969/j.issn.1002-8978.2017.02.020
    [13]
    金磊, 王威, 潘永东. 激光激发表面波与亚表面缺陷作用的理论研究[J]. 固体力学学报,2017,38(2):170-179.

    JIN Lei, WANG Wei, PAN Yongdong. Theoretical study of the interaction of laser excited surface acoustic waves with subsurface deffects[J]. Chinese Journal of Solid Mechanics,2017,38(2):170-179.
    [14]
    郭海洋, 徐志祥, 刘志毅, 等. 带涂层金属板件缺陷的激光超声检测研究[J]. 激光与红外,2017,47(5):541-547. doi: 10.3969/j.issn.1001-5078.2017.05.004

    GUO Haiyang, XU Zhixiang, LIU Zhiyi, et al. Laser ultrasonic test for defects of metal plate with coating[J]. Laser & Infrared,2017,47(5):541-547. doi: 10.3969/j.issn.1001-5078.2017.05.004
    [15]
    LIU W Y, HONG J W. Modeling of three- dimensional Lamb wave propagation excited by laser pulses[J]. Ultrasonics,2015,55:113-122. doi: 10.1016/j.ultras.2014.07.006
  • Related Articles

    [1]XU Han, QIAN Yunsheng, ZHANG Yijun, LANG Yizheng, HUANG Yidong. Defect detection method of photovoltaic panel in bright environment based on linear array InGaAs camera[J]. Journal of Applied Optics, 2025, 46(1): 156-162. DOI: 10.5768/JAO202546.0103005
    [2]LIN Lixing, XIA Zhenping, XU Hao, SONG Yu, HU Fuyuan. Defect detection on complex texture surface based on optimized ResNet[J]. Journal of Applied Optics, 2023, 44(1): 104-112. DOI: 10.5768/JAO202344.0102006
    [3]XU Jianqiao, WU Jun, CHEN Xiangcheng, WU Danchao, LI Bing. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics, 2021, 42(2): 327-333. DOI: 10.5768/JAO202142.0203006
    [4]JIA Meiying, ZHONG Shuncong, ZHOU Ning, LIN Jiewen, ZHANG Qiukun. Defect detection of micro-cantilever beams based on optical coherence vibrometer system[J]. Journal of Applied Optics, 2021, 42(2): 304-309. DOI: 10.5768/JAO202142.0203003
    [5]WU Hao, XU Xiangrong, XU Sixiang. Structural texture defects detection method based on frequency domain texture elimination[J]. Journal of Applied Optics, 2020, 41(4): 876-880. DOI: 10.5768/JAO202041.0405004
    [6]SONG Limei, XU Jingwei, YANG Yangang, GUO Qinghua, YANG Huaidong. Research and application of package defects detection algorithm based on improved GM[J]. Journal of Applied Optics, 2019, 40(4): 644-651. DOI: 10.5768/JAO201940.0403003
    [7]Wang Ying, Wu Feng, Fu Guoping. Method for defects detection and 3D reconstruction based on dispersed points cloud[J]. Journal of Applied Optics, 2016, 37(3): 402-406. DOI: 10.5768/JAO201637.0303001
    [8]YAO Hong-bing, LI Liang-wan, PING Jie, GU Ji-nan, MA Gui-dian, ZENG Xiang-bo, ZHENG Xue-liang. Defect detection for resin lenses based on digital image processing technology[J]. Journal of Applied Optics, 2013, 34(3): 442-446.
    [9]FENG Fu-zhou, ZHANG Chao-sheng, ZHANG Li-xia, MIN Qing-xu. Application of infrared thermal wave technology in fault diagnosis and defect detection for armored equipments[J]. Journal of Applied Optics, 2012, 33(5): 827-831.
    [10]XU Zheng-guang, WANG Xia, WANG Ji-hui, JIN Wei-qi, BAI Ting-zhu. Research of an Approach to Detect Field Defects of Image Intensifier[J]. Journal of Applied Optics, 2005, 26(3): 12-15.
  • Cited by

    Periodical cited type(4)

    1. 赵勇,高腾飞,王颖. 有色金属材料疲劳性能的超声检测技术研究. 世界有色金属. 2024(21): 187-189 .
    2. 张兴娇,文如泉,李伯勋. 基于光谱技术的精密光学元件表面缺陷面积测量. 激光杂志. 2022(07): 200-204 .
    3. 蔡聪艺. 基于稀疏成像与机器视觉的金属材料次表面缺陷检测方法. 齐齐哈尔大学学报(自然科学版). 2021(01): 1-5+25 .
    4. 邵帅. 热轧超薄带钢表面缺陷的成因分析与解决对策. 冶金管理. 2021(13): 29+33 .

    Other cited types(3)

Catalog

    Article views (566) PDF downloads (22) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return