Citation: | XU Zhixiang, WANG Zhenggong, HUANG Yimin, WANG Yu. Numerical study on surface defects detection of plate with transition fillet by laser ultrasound[J]. Journal of Applied Optics, 2020, 41(1): 214-219. DOI: 10.5768/JAO202041.0107005 |
[1] |
沈中华, 袁玲, 张宏超, 等. 固体中的激光超声[M]. 北京: 人民邮电出版社, 2015: 57-68.
SHEN Zhonghua, YUAN Ling, ZHANG Hongchao, et al. Laser ultrasound in solids[M]. Beijing: Post & Telecom Press, 2015: 57-68.
|
[2] |
黄燕杰, 尚建华, 任立红, 等. 用于铝板缺陷无损检测的激光超声有限元模拟研究[J]. 应用光学,2019,40(1):150-156.
HUANG Yanjie, SHANG Jianhua, REN Lihong, et al. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics,2019,40(1):150-156.
|
[3] |
宋潮, 郑宾, 郭华玲, 等. 光源对激光超声信号特性的影响分析[J]. 应用光学,2017,38(3):494-498.
SONG Chao ,ZHENG Bin, GUO Hualing. Analysis of influence of light source on laser ultrasonic signal[J]. Journal of Applied Optics,2017,38(3):494-498.
|
[4] |
李俊燕, 沈中华, 倪晓武, 等. 基于合成孔径聚焦技术的激光超声无损检测方法研究[J]. 中国激光,2018,45(9):0904003. doi: 10.3788/CJL201845.0904003
LI Junyan, SHEN Zhonghua, NI Xiaowu, et al. Laser-ultrasonic non-destructive detection based on synthetic aperture focusing technique[J]. Chinese Journal of Lasers,2018,45(9):0904003. doi: 10.3788/CJL201845.0904003
|
[5] |
MINEO C, CERNIGLIA D, PANTANO A. Numerical study for a new methodology of flaws detection in train axles[J]. Ultrasonics,2014,54(3):841-849. doi: 10.1016/j.ultras.2013.10.008
|
[6] |
马健, 赵扬, 郭锐, 等. 激光辐照材料表层温升规律的数值模拟[J]. 激光技术,2013,37(4):455-459. doi: 10.7510/jgjs.issn.1001-3806.2013.04.009
MA Jian, ZHAO Yang, GUO Rui, et al. Numerical simula-tion of temperature rise of material surface ir-radiated by the laser[J]. Laser Technology,2013,37(4):455-459. doi: 10.7510/jgjs.issn.1001-3806.2013.04.009
|
[7] |
XU B Q, SHEN Z H, NI X W, et al. Thermal and mechanical finite element modeling of laser-generated ultrasound in coating-substrate system[J]. Optics and Laser Technology,2006,38(3):138-145. doi: 10.1016/j.optlastec.2004.12.002
|
[8] |
FRANCISCO H V, BEN D, RACHEL S E. Laser ultrasonic characterisation of branched surface-breaking defects[J]. NDT&E International,2014,68:113-119.
|
[9] |
WANG C Y, SUN A, YANG X Y, et al. Numerical simulation of the interaction of laser-generated Rayleigh waves with subsurface cracks[J]. Applied Physics A,2018,124(8):613.
|
[10] |
冯湾湾, 金磊, 赵金峰. 激光激发横波作用垂直裂纹侧面后的模式转换[J]. 激光技术,2018,42(4):487-493. doi: 10.7510/jgjs.issn.1001-3806.2018.04.011
FENG Wanwan, JIN Lei, ZHAO Jinfeng, et al. Mode conversion of laser-excited shear waves interaction with the side of vertical cracks[J]. Laser Technology,2018,42(4):487-493. doi: 10.7510/jgjs.issn.1001-3806.2018.04.011
|
[11] |
LIU P P, NAZIRAH A W, SOHN H. Numerical simulation of damage detection using laser- generated ultrasound[J]. Ultrasonics,2016,69:248-258. doi: 10.1016/j.ultras.2016.03.013
|
[12] |
李海洋, 李巧霞, 王召巴. 针对金属表面裂纹角度的激光超声检测[J]. 国外电子测量技术,2017,37(2):95-99. doi: 10.3969/j.issn.1002-8978.2017.02.020
LI Haiyang, LI Qiaoxia, WANG Zhaoba. Laser ultrasonic testing for the angle of surface crack on metal[J]. Foreign Electronic Measurement Technology,2017,37(2):95-99. doi: 10.3969/j.issn.1002-8978.2017.02.020
|
[13] |
金磊, 王威, 潘永东. 激光激发表面波与亚表面缺陷作用的理论研究[J]. 固体力学学报,2017,38(2):170-179.
JIN Lei, WANG Wei, PAN Yongdong. Theoretical study of the interaction of laser excited surface acoustic waves with subsurface deffects[J]. Chinese Journal of Solid Mechanics,2017,38(2):170-179.
|
[14] |
郭海洋, 徐志祥, 刘志毅, 等. 带涂层金属板件缺陷的激光超声检测研究[J]. 激光与红外,2017,47(5):541-547. doi: 10.3969/j.issn.1001-5078.2017.05.004
GUO Haiyang, XU Zhixiang, LIU Zhiyi, et al. Laser ultrasonic test for defects of metal plate with coating[J]. Laser & Infrared,2017,47(5):541-547. doi: 10.3969/j.issn.1001-5078.2017.05.004
|
[15] |
LIU W Y, HONG J W. Modeling of three- dimensional Lamb wave propagation excited by laser pulses[J]. Ultrasonics,2015,55:113-122. doi: 10.1016/j.ultras.2014.07.006
|
[1] | XU Han, QIAN Yunsheng, ZHANG Yijun, LANG Yizheng, HUANG Yidong. Defect detection method of photovoltaic panel in bright environment based on linear array InGaAs camera[J]. Journal of Applied Optics, 2025, 46(1): 156-162. DOI: 10.5768/JAO202546.0103005 |
[2] | LIN Lixing, XIA Zhenping, XU Hao, SONG Yu, HU Fuyuan. Defect detection on complex texture surface based on optimized ResNet[J]. Journal of Applied Optics, 2023, 44(1): 104-112. DOI: 10.5768/JAO202344.0102006 |
[3] | XU Jianqiao, WU Jun, CHEN Xiangcheng, WU Danchao, LI Bing. Bearing defects detection based on standardized sample split[J]. Journal of Applied Optics, 2021, 42(2): 327-333. DOI: 10.5768/JAO202142.0203006 |
[4] | JIA Meiying, ZHONG Shuncong, ZHOU Ning, LIN Jiewen, ZHANG Qiukun. Defect detection of micro-cantilever beams based on optical coherence vibrometer system[J]. Journal of Applied Optics, 2021, 42(2): 304-309. DOI: 10.5768/JAO202142.0203003 |
[5] | WU Hao, XU Xiangrong, XU Sixiang. Structural texture defects detection method based on frequency domain texture elimination[J]. Journal of Applied Optics, 2020, 41(4): 876-880. DOI: 10.5768/JAO202041.0405004 |
[6] | SONG Limei, XU Jingwei, YANG Yangang, GUO Qinghua, YANG Huaidong. Research and application of package defects detection algorithm based on improved GM[J]. Journal of Applied Optics, 2019, 40(4): 644-651. DOI: 10.5768/JAO201940.0403003 |
[7] | Wang Ying, Wu Feng, Fu Guoping. Method for defects detection and 3D reconstruction based on dispersed points cloud[J]. Journal of Applied Optics, 2016, 37(3): 402-406. DOI: 10.5768/JAO201637.0303001 |
[8] | YAO Hong-bing, LI Liang-wan, PING Jie, GU Ji-nan, MA Gui-dian, ZENG Xiang-bo, ZHENG Xue-liang. Defect detection for resin lenses based on digital image processing technology[J]. Journal of Applied Optics, 2013, 34(3): 442-446. |
[9] | FENG Fu-zhou, ZHANG Chao-sheng, ZHANG Li-xia, MIN Qing-xu. Application of infrared thermal wave technology in fault diagnosis and defect detection for armored equipments[J]. Journal of Applied Optics, 2012, 33(5): 827-831. |
[10] | XU Zheng-guang, WANG Xia, WANG Ji-hui, JIN Wei-qi, BAI Ting-zhu. Research of an Approach to Detect Field Defects of Image Intensifier[J]. Journal of Applied Optics, 2005, 26(3): 12-15. |