LIU Haiying, WANG Yue, WANG Ying, ZHU Haibin, SUN Hongyu, JIANG Yanming, ZHAO Hanqing. Design of optical system for large-field of view aerocamera[J]. Journal of Applied Optics, 2019, 40(6): 980-986. DOI: 10.5768/JAO201940.0601008
Citation: LIU Haiying, WANG Yue, WANG Ying, ZHU Haibin, SUN Hongyu, JIANG Yanming, ZHAO Hanqing. Design of optical system for large-field of view aerocamera[J]. Journal of Applied Optics, 2019, 40(6): 980-986. DOI: 10.5768/JAO201940.0601008

Design of optical system for large-field of view aerocamera

More Information
  • Received Date: June 03, 2019
  • Revised Date: July 27, 2019
  • Aiming at the features of complex environment and needing high-resolution imaging in high-speed motion for aerocameras, a large-field of view(FOV) aerocamera optical system was designed. A double Gaussian symmetrical structure was adopted as the optical structure of this system, which expanded the camera's field angle by optical splicing with dual imaging modules, and the built-in focusing was achieved by adjusting the last lens. Throughcontrolling the three working modes of the ground objects reflector, the functions of vertical photograph, automatic focusing and forward image motion compensation for aerocameras were realized, respectively. Meanwhile, the image degradation caused by the changes in environmental conditions such as temperature, air pressure, and altitude during aerial photography was avoided to ensure the imaging quality throughout the FOV was not affected. In this design of the optical system, the full FOV without vignetting was realized, and the maximum distortion of the full FOV was less than 0.5‰. At 91 lp/mm, the modulation transfer function(MTF) was close to the diffraction limit, and the objective lens had the same imaging quality in the full FOV. The experimental results and aerial photography test prove that this optical system has the advantages of clear imaging, large FOV, high reliability, small size and light weight, which satisfies the requirements of the aerocameras to be clearly imaged in a relatively complex aviation environment.
  • [1]
    王志坚, 王鹏, 刘智颖.光学工程原理[M].北京:国防工业出版社出版, 2010.

    WANG Zhijian, WANG Peng, LIU Zhiying.Principles of optical engineering[M].Beijing:National Defense Industry Press, 2010.
    [2]
    刘明, 刘钢, 李友.航空相机的像移计算及其补偿分析[J].光电工程, 2004, 31(增刊):14-17. http://d.old.wanfangdata.com.cn/Periodical/gdgc2004z1004

    LIU Ming, LIU Gang, LI You.The effect of image motion on the quality of aerial camera images[J].Opto Electronic Engineering, 2004, 31(Sup.):14-17. http://d.old.wanfangdata.com.cn/Periodical/gdgc2004z1004
    [3]
    李林, 王煊.环境温度对光学系统影响的研究及无热系统设计的现状与发展[J].光学技术, 1997(5):26-29. http://www.cnki.com.cn/Article/CJFDTotal-GXJS705.006.htm

    LI Lin, WANG Xuan.Current status and prospects for thermal effects on optical system and athermailistationtechniques[J].Optical Technology, 1997(5):26-29. http://www.cnki.com.cn/Article/CJFDTotal-GXJS705.006.htm
    [4]
    程晓薇, 车英, 薛常喜.CCD数字航空相机高分辨力成像关键技术与发展[J].电光与控制, 2009, 16(4):130-135. http://d.old.wanfangdata.com.cn/Periodical/dgykz200904002

    CHENG Xiaowei, CHE Ying, XUE Changxi.Critical technologies and development on high-resolution aerial CCD digital airborne camera[J].Electronics Optics & Control, 2009, 16(4):130-135. http://d.old.wanfangdata.com.cn/Periodical/dgykz200904002
    [5]
    刘海英, 王鹏, 朱海滨.航空相机用室内动态分辨率检测系统[J].应用光学, 2018, 39(增刊):148-151.

    LIU Haiying, WANG Peng, ZHU Haibin.Laboratory dynamic resolution detection system for aerial cameras[J].Journal of Applied Optics, 2018, 39(Sup):148-151.
    [6]
    李林.应用光学[M].4版.北京:北京理工大学出版社, 2010.

    LI Lin.Applied optics[M].4th ed.Beijing:Beijing Institute of Technology Press, 2010.
    [7]
    王志坚, 王鹏, 刘泉.动态光学[M].北京:国防工业出版社出版, 2015.

    WANG Zhijian, WANG Peng, LIU Quan.Dynamic optics[M].Beijing:National Defense Industry Press, 2015.
    [8]
    安东.先进机载光电/红外成像系统[J].应用光学, 2018, 39(增刊):69-73.

    AN Dong.Reviews on advanced airborne EO/IR imaging systems[J].Journal of Applied Optics, 2018, 39(Sup):69-73.
    [9]
    李琦.自动对焦技术[D].杭州: 浙江大学, 2004. http://d.wanfangdata.com.cn/Patent_CN02121281.3.aspx

    LI Qi.Automatic focusing technology[D].Hangzhou: Zhejiang University, 2004. http://d.wanfangdata.com.cn/Patent_CN02121281.3.aspx
    [10]
    贾平, 张葆.航空光电侦察平台关键技术及其发展[J].光学精密工程, 2003, 11(1):82-88. doi: 10.3321/j.issn:1004-924X.2003.01.016

    JIA Ping, ZHANG Bao.Critical technologies and their development for airborne opto-electronic reconnaissance platforms[J].Optics and Precision Engineering, 2003, 11(1):82-88. doi: 10.3321/j.issn:1004-924X.2003.01.016
    [11]
    刘明, 刘钢, 李友.航空相机的像移计算及其补偿分析[J].光电工程, 2004, 31(增刊):14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc2004z1004

    LIU Ming, LIU Gang, LI You.The effect of image motion on the quality of aerial camera images[J]. Opto-Electronic Engineering, 2004, 31(Sup):14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdgc2004z1004
    [12]
    袁旭仓.现代光学设计方法[M].北京:北京理工大学出版社, 1995.

    YUAN Xucang, Modern optical design methods[M].Beijing:Beijing Institute of Technology Press, 1995.
    [13]
    樊越.航空相机光机热分析与热控技术研究[D].成都: 中科院光电技术研究所, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026465.htm

    FAN Yue.Thermal/structural/optical analysis and thermal control technique of aerial camera[D].Chendu: University of Chinese Academy of Sciences, 2013. http://cdmd.cnki.com.cn/Article/CDMD-80151-1013026465.htm
    [14]
    蓝公仆, 汪旋.主动调焦式航空相机物镜光学设计及温度仿真分析[J].光学学报, 2012, 32(3):223-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201203036

    LAN Gongpu, WANG Xuan.Optical design and thermal analysis for the active-focusing aerial camera objective[J].Acta Optica Sinica, 2012, 32(3):223-233. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201203036
  • Related Articles

    [1]LUO Shiqi, LIU Jingzhou, CHEN Xuanhui, XIE Xiangsheng. Speckle autocorrelation resolution measurement and correction[J]. Journal of Applied Optics, 2023, 44(2): 398-405. DOI: 10.5768/JAO202344.0203006
    [2]WANG Yonghong, BAO Fengqing, ZHANG Xiao, ZHAO Qihan, CHEN Weijie, YAN Peizheng. Three-dimensional deformation measurement based on digital speckle pattern interferometry[J]. Journal of Applied Optics, 2020, 41(4): 681-689. DOI: 10.5768/JAO202041.0409005
    [3]Zhang Dehai, Li Yanqin, Liu Jianxiu, Xie Guizhong, Tian Shuxia, Guo Changjiang. Strain optical detection technology applied for bi-metal clad plate using digital speckle correlation method[J]. Journal of Applied Optics, 2018, 39(6): 873-879. DOI: 10.5768/JAO201839.0603004
    [4]Huang Lei, Zhang Li-chao, Yan Ran. Application of high-performance GPU computing in digital speckle pattern recognition algorithms[J]. Journal of Applied Optics, 2015, 36(5): 762-767. DOI: 10.5768/JAO201536.0502006
    [5]MI Hong-lin. Rock mechanical behaviors testing by digital speckle correlation method[J]. Journal of Applied Optics, 2013, 34(1): 123-127.
    [6]JIANG Zhi-nian. New algorithm for digital image speckle correlation method based on ant colony optimization[J]. Journal of Applied Optics, 2012, 33(3): 527-531.
    [7]PAN Yun, PAN Wei-qing, CHAO Ming-ju. Comparison of algorithms for filtering speckle noise in digital holography[J]. Journal of Applied Optics, 2011, 32(5): 883-887.
    [8]WU Ying-li, WU Zhen-sen, ZHANG Geng. AStudy of anisotropic speckle patterns by rough cylindrical surfaces[J]. Journal of Applied Optics, 2011, 32(1): 35-39.
    [9]LI Xia, KANG Yu-si. Speckle contrast reduction in laser display[J]. Journal of Applied Optics, 2010, 31(4): 648-651.
    [10]FU Si-hua, YU Qi-feng. Filtering Methods of the Digital Speckle fringe Pattern[J]. Journal of Applied Optics, 2005, 26(4): 5-8.

Catalog

    Article views (811) PDF downloads (155) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return