Huang Lei, Zhang Li-chao, Yan Ran. Application of high-performance GPU computing in digital speckle pattern recognition algorithms[J]. Journal of Applied Optics, 2015, 36(5): 762-767. DOI: 10.5768/JAO201536.0502006
Citation: Huang Lei, Zhang Li-chao, Yan Ran. Application of high-performance GPU computing in digital speckle pattern recognition algorithms[J]. Journal of Applied Optics, 2015, 36(5): 762-767. DOI: 10.5768/JAO201536.0502006

Application of high-performance GPU computing in digital speckle pattern recognition algorithms

More Information
  • Digital speckle correlation method has the advantages of low demand of the measurement environment, overall non-contact measure, however, the algorithm efficiency has been one of the bottlenecks limiting its development. The graphics processing unit (GPU) has the natural parallelism, GPU highperformance computing brings great efficiency on computer image processing. By programming with the compute unified device architecture (CUDA) platform, the GPU high-performance parallel processing was applied for the traditional digital speckle point-by-point search algorithm, cross search algorithm and genetic algorithm.Comparing with the traditional method, the experimental results show that the efficiency of these 3 methods improve by 20,8,31 times respectively for 150150 pixels speckle image, while by 183,33,44 times respectively for 500500 pixels speckle images and by 424,116,44 times respectively for 1 0001 000 pixels speckle images.
  • [1]Yamaguchi I. A Laser-speckle strain gage[J]. Journal of Physis E: Scientific Instruments, 1981, 14:1270-1273.
    [2]Ranson W F, Peters W H. Digital image techniques in experimental stress analysis[J]. Optical Engineering, 1982,21(3) :427-431.
    [3]Jin Guanchang. Computer assistant optic measurement[M]. 2nd ed. Beijing: Tsinghua University Press,2007.
    金观昌. 计算机辅助光学测量[M]. 2版. 北京:清华大学出版社,2007.
    [4]Ruan Qiuqi. Digital image processing[M]. Beijing: Publishing House of Electronics Industry,2001.
    阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [5]Liu Haibo,Shen Jing, Guo Song. Digital image processing using C++[M]. Beijing: China Machine Press, 2010.
    刘海波,沈晶,郭耸. Visual C++数字图像处理技术详解[M].北京:机械工业出版社,2010.
    [6]Jason Sanders. CUDA by example: an introduction to general-purpose GPU programming[M]. translated by Nie Xuejun, Beijing:China Machine Press,2011.
    桑德斯. GPU高性能编程CUDA实战[M]. 聂雪军,译.北京:机械工业出版社,2011.
    [7]Rui Jiabai, Jin Guanchang, Xu Binye. An advanced digital speckle correlation method and its application[J]. Acta Mechanica Sinica, 1994,26(5): 599-607.
    芮嘉白,金观昌,徐秉业.一种新的数字散斑相关方法及其应用[J].力学学报,1994,26(5):599-607.
    [8]Sun Yiling, Li Shanxiang, Li Jingzhen. Investigation and modification of the digital speckle correlation method[J]. Acta Photonica Sinica, 2001,30(1):54-57.
    孙一翎,李善祥,李景镇. 数字散斑相关测量方法的研究与改进[J].光子学报,2001,30(1):54-57.
    [9]Xi Yugeng, Chai Tianyou, Yun Weimin. Survey on genetic algorithm[J]. Control theory and applications, 1996,13(6):697-708.
    席裕庚,柴天佑,恽为民. 遗传算法综述[J]. 控制理论与应用,1996,13(6):697-708.
    [10]Gao Jiaquan, He Guixia. A review of parallel genetic algorithms[J]. Journal of Zhejiang University of Technology,2007,35(1):56-72.
    高家全,何桂霞. 并行遗传算法研究综述[J]. 浙江工业大学学报,2007,35(1):56-72.
    [11]Tan Caifeng, Ma Anguo, Xing Zuocheng. Research on the parallel implementation of genetic algorithm on CUDA platform[J]. Computer Engineering & Science, 2009,31(A1):68-72.
    谭彩凤,马安国,邢座程. 基于CUDA平台的遗传算法并行实现研究[J]. 计算机工程与科学,2009,31(A1):68-72.
    [12]Zhang Zhaohui, Liu Junqi, Xu Qinjian. Analysis and application of the GPU parallel computing technology[J]. Information Technology, 2009,11:86-89.
    张朝晖,刘俊起,徐勤建. GPU并行计算技术分析与应用[J]. 信息技术,2009,11:86-89.
    [13]Wu Enhua, Liu Youquan. General purpose computing on GPU[J]. Journal of Computer-Aid Design & Computer Graphics. 2004,16(5):601-612.
    吴恩华,柳有权. 基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612.

Catalog

    Article views (1887) PDF downloads (114) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return