ZHAO Ming, WANG Tianshu. Generation of high-energy pulses in dispersion-managed Tm-doped fiber laser[J]. Journal of Applied Optics, 2019, 40(4): 551-556. DOI: 10.5768/JAO201940.0401004
Citation: ZHAO Ming, WANG Tianshu. Generation of high-energy pulses in dispersion-managed Tm-doped fiber laser[J]. Journal of Applied Optics, 2019, 40(4): 551-556. DOI: 10.5768/JAO201940.0401004

Generation of high-energy pulses in dispersion-managed Tm-doped fiber laser

More Information
  • Received Date: April 23, 2019
  • Revised Date: May 06, 2019
  • An dispersion-managed thulium(Tm)-doped fiber laser was designed and demonstrated. By adjusting the pump power and the intracavity polarization state, the stable stretched-pulse can be firstly achieved. The center wavelength of stretched-pulse is 1 939.4 nm and the pulse width is 482 fs. The maximum output power of stretched-pulse is 15 mW, and the corresponding single pulse energy is 0.52 nJ. When increasing the pump power to 645 mW, the noise-like pulse can be realized with appropriately adjusting the polarization controller, and the center wavelength is 1 940.1 nm. The mode-locked pulse achieved has femtosecond(fs)-order spike and picosecond(ps)-order pedestal. The maximum output power of noise-like pulse is 20.4 mW and the corresponding single pulse energy is 0.7 nJ. Compared to traditional soliton, the mode-locked pulses achieved under dispersion management have higher pulse energy. In addition, the designed Tm-doped fiber laser can be used as the seed source of the main oscillation power amplification and chirped-pulse amplification structure for improving the pulse energy and further expanding the practical applications of the 2 μm high energy fiber laser.
  • [1]
    SCHOLLE K, HEUMANN E, HUBER G. Single mode tm and tm, ho: LuAG lasers for LIDAR applications[J]. Laser Physics Letters, 2004, 1(6): 285-290. doi: 10.1002/lapl.200410067
    [2]
    王天枢, 王诚博, 马万卓. 2 μm波段宽带可调谐全光纤激光器[J].应用光学, 2018, 39(4): 569-573 http://www.cnki.com.cn/Article/CJFDTotal-YYGX201804021.htm

    WANG Tianshu, WANG Chengbo, MA Wanzhuo, et al. Broadband tunable all fiber laser at 2 μm band[J]. Journal of Applied Optics, 2018, 39(4): 569-573 http://www.cnki.com.cn/Article/CJFDTotal-YYGX201804021.htm
    [3]
    GEREON H, YAO C P, ENDL E. New concepts in laser medicine: towards a laser surgery with cellular precision[J]. Medical Laser Application, 2005, 20(2):135-139. https://www.sciencedirect.com/science/article/pii/S1615161505000190
    [4]
    BACH T, HERRMANN T R W, HAECKER A, et al. Thulium: yttrium-aluminium-garnet laser prostatectomy in men with refractory urinary retention[J]. BJU International, 2009, 104(3): 361-364. doi: 10.1111/j.1464-410X.2009.08412.x
    [5]
    贾志旭, 姚传飞, 李真睿.基于氟碲酸盐光纤的高功率中红外超连续光源(特邀)[J].红外与激光工程, 2018, 47(11): 0803004. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201808004

    JIA Zhixu, YAO Chuangfei, LI Zhenriu, et al. High power mid-infrared supercontiuum light sources based on fluorotellurite glass fibers (invited)[J]. Infrared and Laser Engineering, 2018, 47(8): 0803004. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201808004
    [6]
    GENG J H, JIANG S B. Fiber lasers: the 2 μm market heats up[J]. Optics and Photonics News, 2014, 25(7): 34. doi: 10.1364/OPN.25.7.000034
    [7]
    SHEN Y, ZHOU S, LUAN K, et al. Gain-switched 2.8μm Er3+-doped double-clad ZBLAN fiber laser[C]// International Symposium on Laser Interaction with Matter.[s.l.]: SPIE, 2015. http://www.researchgate.net/publication/282299219_Gain-switched_28mm_Er3-doped_double-clad_ZBLAN_fiber_laser
    [8]
    KALAYCIOGLU H, ELAHI P, AKCAALAN O, et al. High-repetition-rate ultrafast fiber lasers for material processing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-12. http://yoksis.bilkent.edu.tr/pdf/?doi=13324
    [9]
    徐佳, 吴思达, 刘江, 等.被动锁模的传统孤子、耗散孤子掺铒光纤激光器[J].中国激光, 2013, 40(7): 13-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201307003

    XU Jia, WU Sida, LIU Jiang, et al. Passively mode-locked traditional soliton, dissipative soliton Er-doped fiber lasers[J]. Chinese Journal of Lasers, 2013, 40(7): 13-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201307003
    [10]
    DU Y Q, SHU X W, CAO H R, et al. Dynamics of dispersive wave and regimes of different kinds of sideband generation in mode-locked soliton fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1-8. http://cn.bing.com/academic/profile?id=5af4473e67bd6e7f47bb6c428d8ccf0e&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    CHEN G W, LI W L, WANG G M, et al. Generation of coexisting high-energy pulses in a mode-locked all-fiber laser with a nonlinear multimodal interference technique[J]. Photonics Research, 2019, 7(2): 187. https://www.ixueshu.com/document/b6a0a2e89f6b93220a269fcd5b3fc57b318947a18e7f9386.html
    [12]
    NELSON L E, JONES D J, TAMURA K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B: Lasers and Optics, 1997, 65(2): 277-294. doi: 10.1007/s003400050273
    [13]
    HAXSEN F, RUEHL A, ENGELBRECHT M, et al. Stretched-pulse operation of a thulium-doped fiber laser[J]. Optics Express, 2008, 16(25): 20471. doi: 10.1364/OE.16.020471
    [14]
    WANG Q, CHEN T, CHEN K. Mode-locked ultrafast Thulium fiber laser with all-fiber dispersion management[C]// Lasers & Electro-optics. America: IEEE, 2010. https://www.researchgate.net/publication/248389531_Mode-Locked_Ultrafast_Thulium_Fiber_Laser_with_All-Fiber_Dispersion_Management
    [15]
    陈家旺, 赵鹭明.类噪声脉冲光纤激光器研究现状及进展[J].激光与光电子学进展, 2017, 54(11): 9-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201711002

    CHEN Jiawang, ZHAO Luming. Noise-like pulsed fiber lasers[J]. Laser & Optoelectronics Progress, 2017, 54(11): 9-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201711002
    [16]
    SOBON G, SOTOR J, PRZEWOLKA A, et al. Amplification of noise-like pulses generated from a graphene-based Tm-doped all-fiber laser[J]. Optics Express, 2016, 24(18):20359-20364. doi: 10.1364/OE.24.020359
    [17]
    SOBON G, SOTOR J, MARTYNKIEN T, et al. Ultra-broadband dissipative soliton and noise-like pulse generation from a normal dispersion mode-locked Tm-doped all-fiber laser[J]. Optics Express, 2016, 24(6):6156. doi: 10.1364/OE.24.006156
    [18]
    KADEL R, WASHBURN B R. Stretched-pulse and solitonic operation of an all-fiber thulium/holmium-doped fiber laser[J]. Applied Optics, 2015, 54(4):746. doi: 10.1364/AO.54.000746
    [19]
    PAWLISZEWSKA M, MARTYNKIEN T, PRZEWŁOKA A, et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Optics Letters, 2018, 43(1): 38. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=182d5fceb01bf3719cf13c922f53b57e
    [20]
    SUN B, LUO J Q, ZHANG Y, et al. 65-fs Pulses at 2μm in a compact Tm-doped all-fiber laser by dispersion and nonliearity management[J]. IEEE Photonics Technology Letters, 2018, 30(4): 303-306. doi: 10.1109/LPT.2017.2780284
    [21]
    JUNG M, LEE J, JOONHOI K, et al. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi_2Te_3 topological insulator[J]. Optics Express, 2014, 22(7):7865. doi: 10.1364/OE.22.007865
  • Related Articles

    [1]LUO Shiqi, LIU Jingzhou, CHEN Xuanhui, XIE Xiangsheng. Speckle autocorrelation resolution measurement and correction[J]. Journal of Applied Optics, 2023, 44(2): 398-405. DOI: 10.5768/JAO202344.0203006
    [2]WANG Yonghong, BAO Fengqing, ZHANG Xiao, ZHAO Qihan, CHEN Weijie, YAN Peizheng. Three-dimensional deformation measurement based on digital speckle pattern interferometry[J]. Journal of Applied Optics, 2020, 41(4): 681-689. DOI: 10.5768/JAO202041.0409005
    [3]Zhang Dehai, Li Yanqin, Liu Jianxiu, Xie Guizhong, Tian Shuxia, Guo Changjiang. Strain optical detection technology applied for bi-metal clad plate using digital speckle correlation method[J]. Journal of Applied Optics, 2018, 39(6): 873-879. DOI: 10.5768/JAO201839.0603004
    [4]Huang Lei, Zhang Li-chao, Yan Ran. Application of high-performance GPU computing in digital speckle pattern recognition algorithms[J]. Journal of Applied Optics, 2015, 36(5): 762-767. DOI: 10.5768/JAO201536.0502006
    [5]MI Hong-lin. Rock mechanical behaviors testing by digital speckle correlation method[J]. Journal of Applied Optics, 2013, 34(1): 123-127.
    [6]JIANG Zhi-nian. New algorithm for digital image speckle correlation method based on ant colony optimization[J]. Journal of Applied Optics, 2012, 33(3): 527-531.
    [7]PAN Yun, PAN Wei-qing, CHAO Ming-ju. Comparison of algorithms for filtering speckle noise in digital holography[J]. Journal of Applied Optics, 2011, 32(5): 883-887.
    [8]WU Ying-li, WU Zhen-sen, ZHANG Geng. AStudy of anisotropic speckle patterns by rough cylindrical surfaces[J]. Journal of Applied Optics, 2011, 32(1): 35-39.
    [9]LI Xia, KANG Yu-si. Speckle contrast reduction in laser display[J]. Journal of Applied Optics, 2010, 31(4): 648-651.
    [10]FU Si-hua, YU Qi-feng. Filtering Methods of the Digital Speckle fringe Pattern[J]. Journal of Applied Optics, 2005, 26(4): 5-8.

Catalog

    Article views (967) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return