QIN Lin, MI Qian, LI Hong. Novel liquid float polishing technology based on non-Newtonian fluid[J]. Journal of Applied Optics, 2019, 40(2): 223-228. DOI: 10.5768/JAO201940.0201007
Citation: QIN Lin, MI Qian, LI Hong. Novel liquid float polishing technology based on non-Newtonian fluid[J]. Journal of Applied Optics, 2019, 40(2): 223-228. DOI: 10.5768/JAO201940.0201007

Novel liquid float polishing technology based on non-Newtonian fluid

More Information
  • Received Date: August 29, 2018
  • Revised Date: October 28, 2018
  • A novel flexible liquid float polishing technique was presented through software simulation and experiment. Firstly, the fluent software was employed to analyze the flow field of the liquid float polishing model which had shear thickening effect. The flow field pressure and shear force distribution of the liquid float polishing model were obtained. The simulation results show that the liquid float polishing technology has certain shearing effect on the surface of the workpiece, and the workpiece material can be removed effectively. Then, an experimental platform was established to verify the simulation results. A kind of polishing solution based on non-Newtonian power law fluid was prepared which composed of SiO2 (particle size 12 nm) served as solvend, polyethylene glycol (molecular weight of 200) served as solvent, and the cerium oxide with a mass fraction of 18% is also added as the abrasive. The surface roughness of K9 glass can be effectively reduced from 23.97 nm to 1.023 nm after 90 min polishing by using the novel flexible liquid float polishing technique. The experimental results show that this technology can be used for the processing of optical components.
  • [1]
    袁巨龙, 王志伟, 文东辉, 等.超精密加工现状综述[J].机械工程学报, 2007(01):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006

    YUAN Julong, WANG Zhiwei, WEN Donghui, et al. Summary of the status quo of ultra-precision machining[J]. Chinese Journal of Mechanical Engineering, 2007(01):35-48. doi: 10.3321/j.issn:0577-6686.2007.01.006
    [2]
    彭进, 夏琳, 邹文俊.化学机械抛光液的发展现状与研究方向[J].表面技术, 2012, 41(2):78-81. http://d.old.wanfangdata.com.cn/Periodical/bmjs201204029

    PENG Jin, XIA Lin, ZOU Wenjun. Research status and prospect of chemical mechanical polishing slurry[J]. Surface Technology, 2012, 41(2):78-81. http://d.old.wanfangdata.com.cn/Periodical/bmjs201204029
    [3]
    KIM S, SAKA N, CHUN J H, et al.Modeling and mitigation of pad scratching in chemical-mechanical polishing[J]. CIRP Annals Manufacturing Technology, 2013, 62 (1):307-310. doi: 10.1016/j.cirp.2013.03.069
    [4]
    徐兴芹.弹性发射加工中磨粒群运动特性的研究[D].大连: 大连理工大学, 2013.

    XU Xingqin. Study of behaviour of particle group movement in elastic[D]. Dalian: Dalian University of Technology, 2013.
    [5]
    沙树静, 胡锦飞, 张和权.磁流变抛光技术发展[J].机械工程师, 2018, 1(7):5-8. doi: 10.3969/j.issn.1002-2333.2018.07.002

    SHA Shujing, HU Jinfei, ZHANG Hequan. New progress of magnetorheological finishing[J]. Mechanical Engineer, 2018, 1(7):5-8. doi: 10.3969/j.issn.1002-2333.2018.07.002
    [6]
    阎秋生, 徐沛杰, 路家斌, 等.硅溶胶抛光液稳定性及对SiC化学机械抛光的影响[J].半导体技术, 2018, 43(9):664-668. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtjs201809005

    YAN Qiusheng, XU Peijie, LU Jiabin, et al. Stability of colloidal silica polishing solution and its effect on SiC chemical mechanical polishing[J]. Semiconductor Technology, 2018, 43(9):664-668. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bdtjs201809005
    [7]
    王文博.大口径快速抛光机设计与相关问题研究[D].河南: 中原工学院, 2015.

    WANG Wenbo. Design of large aperture rapid polishing machine and research of its relative issues[D]. Hernan: Zhongyuan University of Technology, 2015.
    [8]
    戴伟涛, 吕冰海, 翁海舟, 等.圆柱表面声波辅助剪切增稠抛光优化实验研究[J].表面技术, 2016, 45(2):188-193. http://d.old.wanfangdata.com.cn/Periodical/bmjs201602032

    DAI Weitao, LV Binghai, WENG Haizhou, et al. Optimization experiment of acoustic assisted shear thickening polishing of cylindrical surface[J]. Surface Technology, 2016, 45(2): 188-193. http://d.old.wanfangdata.com.cn/Periodical/bmjs201602032
    [9]
    李敏, 袁巨龙.剪切增稠抛光方法的基础研究[D].湖南: 湖南大学, 2015.

    LI Min, YUAN Julong. Fundamental research on shear-thickening polishing method[J]. Hunan: Hunan University, 2015.
    [10]
    翁海舟, 吕冰海, 胡刚翔, 等.石英晶片剪切增稠抛光优化实验[J].纳米技术与精密工程, 2017, 15(3):227-233. http://d.old.wanfangdata.com.cn/Periodical/nmjsyjmgc201703012

    WENG Haizhou, LV Binghai, HU Gangxiang, et al. Optimization experiment of shear thickening polishing of quartz substrates[J]. Nanotechnology and Precision Engineering, 2017, 15(3):227-233. http://d.old.wanfangdata.com.cn/Periodical/nmjsyjmgc201703012
    [11]
    LI M, LYU B, YUAN J, et al. Shear-thickening polishing method[J]. International Journal of Machine Tools & Man-ufacture, 2015, 94:88-99. http://d.old.wanfangdata.com.cn/Periodical/hnlgdxxb201509018
    [12]
    WAGNER N J, BRADY J F. Shear thickening in colloidal dispersions[J]. Physics Today, 2009, 62(10): 27-32. doi: 10.1063/1.3248476
    [13]
    李敏, 袁巨龙, 吕冰海.剪切增稠抛光磨料液的制备及其抛光特性[J].光学精密工程, 2015, 23(9):2513-2521. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509012

    LI Min, YUAN Julong, LV Binghai. Preparation of shear thickening polishing abrasive slurries and their polishing properties[J]. Editorial Office of Optics and Precision Engineering, 2015, 23(9): 2513-2521. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201509012
    [14]
    唐家鹏. ANSYS FLUENT 16.0超级学习手册[M].北京:人民邮电出版社, 2016.

    TANG Jiapeng. ANSYS FLUENT 16.0 super learning manual[M]. Beijing: People's Posts and Telecommunications Press, 2016.
    [15]
    章梓雄, 董曾南.粘性流体力学[M].北京:清华大学出版社, 2011.

    ZHANG Zixiong, DONG Zengnan. Viscous fluid mechanics[M]. Beijing: Tsinghua University Press, 2011.
    [16]
    刘佳妮.平面光学元件表面面形参数测量评价研究[D].西安: 西安工业大学, 2018.

    LIU Jiani. Measurement and evaluation of surface profile parameters of planar optical elements[D]. Xi'an: Xi'an Institute of Technology, 2018.
  • Related Articles

    [1]LI Hongqiang, MAO Quanhua, AN Zhixuan, LIN Zhilin, WANG Yingjie, MENG Wentao, ZHU Zhiyue, ZHANG Zhen, Juan Daniel Prades Garcia. Wearable fiber grating demodulation based on photonic integrated chip[J]. Journal of Applied Optics, 2023, 44(1): 219-225. DOI: 10.5768/JAO202344.0108001
    [2]LIU Qiang, LI Binwen, SUN Yudan, LIU Chao, LIU Wei, FU Tianshu, ZHAO Jin, TAI Shengnan. FBG demodulation method based on long-period fiber gratings[J]. Journal of Applied Optics, 2022, 43(1): 160-166. DOI: 10.5768/JAO202243.0108002
    [3]Lu Chuang, Zhao Meirong, Wang Shuang, Liu Tiegen, Jiang Junfeng, Yan Jinling, Zheng Yelong. Deviation calibration method for fiber Bragg grating demodulation system based on tunable Fabry-Perot filter drived by triangular wave[J]. Journal of Applied Optics, 2017, 38(1): 147-152. DOI: 10.5768/JAO201738.0108002
    [4]YAO Guo-zhen, LI Yong-qian. Impact of F-P etalon temperature characteristics on FBG wavelength demodulation accuracy[J]. Journal of Applied Optics, 2014, 35(3): 542-546.
    [5]WANG Jian, TANG Feng, REN Li-yong, XU Jin-tao, HU Man-li. Vibration demodulation using fiber grating based on tunable Gaussian filter[J]. Journal of Applied Optics, 2010, 31(6): 993-999.
    [6]GAO Xue-qing, JIANG De-sheng. FBG wavelength demodulation technology with doubleedge average[J]. Journal of Applied Optics, 2006, 27(6): 581-584.
    [7]LI Zhi-quan, LI Ya-ping, ZHU Dan-dan, LI Li-xin. Demodulation scheme for filtering method based fiber Bragg grating sensing[J]. Journal of Applied Optics, 2006, 27(4): 327-331.
    [8]ZHU Dan-dan, WANG Hai-fang, ZHANG Ran, LI Ya-ping1, YAN Li-juan, ZHANG Jun-jie. Strain Measuring System Based on Chirped Gratings and Edge Linear Filtering Demodulation Technology[J]. Journal of Applied Optics, 2005, 26(4): 50-52.
    [9]FAN Dian, JIANG De-sheng, MEI Jia-chun. Interrogation Project for Encoding Fiber Bragg Grating Sensor Array[J]. Journal of Applied Optics, 2005, 26(4): 46-49.
    [10]LI Zhi-quan, XU Ming-yan, TANG Jing, CHEN Ying, ZHAO Yan-tao. Study on Techniques of Signal Demodulation in Fiber Bragg Grating Sensing System[J]. Journal of Applied Optics, 2005, 26(4): 36-41.
  • Cited by

    Periodical cited type(3)

    1. 张金玉,金尚忠,张彪,吴磊,俞兵,袁良,黎高平. 光腔衰荡法数据截取对时间常数测量精度的影响分析. 应用光学. 2023(01): 153-158 . 本站查看
    2. 张彪,张金玉,吉晓,段园园,吴磊,黎高平,于东钰,阴万宏. 测量大口径光学元件反射率用精密扫描系统误差分析. 应用光学. 2023(02): 380-385 . 本站查看
    3. 赵佳乐,周冰,王广龙,应家驹,王强辉,邓磊. 基于广义逆矩阵的BRDF模型参数拟合方法. 激光技术. 2023(03): 407-412 .

    Other cited types(0)

Catalog

    Article views (991) PDF downloads (67) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return