Xia Runqiu, Liu Yang, Zhang Yue, Niu Chunhui, Lyu Yong. Thermal-stress damage of MCT infrared focal plane array detector caused by laser irradiation[J]. Journal of Applied Optics, 2018, 39(5): 751-756. DOI: 10.5768/JAO201839.0506003
Citation: Xia Runqiu, Liu Yang, Zhang Yue, Niu Chunhui, Lyu Yong. Thermal-stress damage of MCT infrared focal plane array detector caused by laser irradiation[J]. Journal of Applied Optics, 2018, 39(5): 751-756. DOI: 10.5768/JAO201839.0506003

Thermal-stress damage of MCT infrared focal plane array detector caused by laser irradiation

More Information
  • Received Date: May 22, 2018
  • Revised Date: June 27, 2018
  • Based on the structure and the thermal-stress properties of materials of mercury cadmium telluride(MCT) infrared focal plane array detector (IRFPA), the damage mechanism of MCT IRFPA caused by laser irradiation was elaborated. Based on the relevant irradiation environment and conditions, a three-dimensional simulation model was established by finite element analysis. Based on COMSOL Multiphysics software, the temperature changes and stress changes of various parts of MCT detector were detected, when irradiated by 10.6 μm laser. The numerical analysis method was used to compare the temperature field changes and stress field changes along the surface radial and internal axial directions of the MCT detector after laser irradiation with different spot power.The numerical analysis method was used to compare the spot area of MCT detectors. Temperature field changes and stress field changes in the radial and internal axial directions of lasers with a constant irradiated area and different constant powers.The simulation results show that the surface temperature and stress of the MCT detector increase rapidly after continuous laser irradiation of 106 W/cm2, causing damage to the detector surface.Meanwhile, the temperature change of the irradiated part of the detector also causes the internal local stress value to change.Through comparing the stress damage threshold and variation trend of the MCT detector with the experimental data in the literature referenced, it is found that the results are basically the same, the feasibility of the model can be verified.
  • [1]
    李鹏飞.红外焦平面探测器热-应力耦合分析[D].洛阳: 河南科技大学, 2014.

    LI Pengfei. The thermal-stress coupling analysis of infrared focal plane array detector[D]. Luoyang: Henan University of Science and Tech-nology, 2014.
    [2]
    徐强, 潘丰, 黄莉, 等.激光干扰红外成像系统的噪声等效温差及信噪比分析[J].应用光学, 2017, 38(6):990-994. http://d.old.wanfangdata.com.cn/Periodical/yygx201706022

    XU Qiang, PAN Feng, HUANG Li, et al. NETD and SNR analysis of laser jamming infrared imaging system[J]. Journal of Applied Optics, 2017, 38(6):990-994. http://d.old.wanfangdata.com.cn/Periodical/yygx201706022
    [3]
    强希文, 张建泉, 刘峰, 等.强激光辐照探测器材料力学效应的解析研究[J].红外与激光工程, 1999, 28(6):47-51. doi: 10.3969/j.issn.1007-2276.1999.06.010

    QIANG Xiwen, ZHANG Jianquan, LIU Feng, et al. Analytical investigation on mechanical effects of detector materials induced by laser beams[J]. Infrared and Laser Engineering, 1999, 28(6):47-51. doi: 10.3969/j.issn.1007-2276.1999.06.010
    [4]
    范广鑫.脉冲激光对光电探测器损伤效应的研究[D].哈尔滨: 哈尔滨工业大学, 2009. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2010064400.nh

    FAN Guangxin. Research of pulsed laser induced damage on photodetector[D]. Harbin: Harbin Institute of Technology, 2009. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2010064400.nh
    [5]
    PALIK E D. Handbook of optical constants of solidsⅠ[M]. San Diego: Academic Press, 1998:413.
    [6]
    STREKALOV V N. Absorption of laser light by ions as a mechanism of optical damage in solids[J]. SPIE, 1998, 3244:26-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026110901
    [7]
    蔡虎. TEA-CO2脉冲强激光对Hg0.8Cd0.2Te晶片的破坏研究[D].武汉: 华中科技大学, 2005.

    CAI Hu. Research of the damage of Hg0.8Cd0.2Te induce by high power pulsed TEA-CO2 laser[D]. Wuhan: Huazhong University of Science and Technology, 2005.
    [8]
    MEYER J R, KRUER M R, BARTOLI F J, et al. Optical heating in semiconductors: laser dam-age in Ge, Si, InSb, and GaAs[J]. J.Appl. Phys., 1980, 51(10):5513. doi: 10.1063/1.327469
    [9]
    NAKAGAWA K, MAEDA K, TAKEUCHI S. Observation of dislocations in cadmium telluride by cathodoluminescence micro-scopy[J]. Appl. Phys.Lett., 1979, 34(9): 574 -575. https://www.researchgate.net/publication/224413211_Observation_of_dislocations_in_cadmium_telluride_by_cathodoluminescence_microscopy
    [10]
    王飞.单元光伏型碲镉汞探测器及可见光CCD的激光损伤机理研究[D].长沙: 国防科学技术大学, 2006. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2007139895.nh

    WANG Fei. Damage mechanisms of laser on PV-type single element HgCdTe device and visible-light CCD[D]. Changsha: National University of Defense Technology, 2006. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&filename=2007139895.nh
  • Related Articles

    [1]MO Yuxiao, ZHOU Ziye, FAN Chenguang, YANG Yujing, TIAN Zhen. Modal testing and kinetic finite element correction of mirror assemblies for co-phase devices[J]. Journal of Applied Optics, 2024, 45(6): 1147-1157. DOI: 10.5768/JAO202445.0601006
    [2]DAI Jinqi, YU Hailong, WANG Junguang, GAO Xun. Influence of laser energy density on thermal stress at photosensitive layer of CMOS detector[J]. Journal of Applied Optics, 2024, 45(3): 568-574. DOI: 10.5768/JAO202445.0310011
    [3]XING Minghui, LI Jianjun, ZHAI Wenchao, TANG Qi, ZHENG Xiaobing. Design of support structure for small caliber off-axis parabolic reflector based on finite element analysis[J]. Journal of Applied Optics, 2019, 40(6): 1160-1166. DOI: 10.5768/JAO201940.0605004
    [4]HUANG Yanjie, SHANG Jianhua, REN Lihong, CHENG Xiaojin. Finite element simulation in laser ultrasound for non-destructive testing of aluminum defect materials[J]. Journal of Applied Optics, 2019, 40(1): 150-156. DOI: 10.5768/JAO201940.0107004
    [5]Song Dong-sheng, Yang Yuan-cheng, Gao Ya, Wang Jing, Bu Zhong-hong. FEM modal analysis and test validation for sight-stabilization turret structure[J]. Journal of Applied Optics, 2015, 36(4): 497-502. DOI: 10.5768/JAO201536.0401001
    [6]ZHANG Ming-hui, LIU Yuan-zheng, LAN Pei-feng, ZHANG Zhen-rong. Structural finite element analysis of path length control mirror forlaser gyroscopes[J]. Journal of Applied Optics, 2011, 32(2): 353-357.
    [7]LIU Quan-xi, ZHONG Ming. Temperature and thermal stress distribution in thin disk laser end-pumped by LD[J]. Journal of Applied Optics, 2010, 31(4): 636-640.
    [8]LI Yu-tao, QU Xiao-chi, ZHANG Tian-xiao. Finite element analysis of IR optical system based on ANSYS[J]. Journal of Applied Optics, 2008, 29(2): 174-177.
    [9]ZHAO Shi-bin, ZHAO Jia, ZHANG Cun-lin, DING You-fu, LI Yan-hong. Finite element simulation and analysis for type identification of defects under material surfaces in infrared thermal wave nondestructive detection[J]. Journal of Applied Optics, 2007, 28(5): 559-563.
    [10]LIU Quan-xi, QI Wen-zong, HAO Qiu-long, ZHAO Fang-dong. Finite element analysis of thermal effect of photovoltaic detector irradiated by laser[J]. Journal of Applied Optics, 2007, 28(3): 275-279.
  • Cited by

    Periodical cited type(6)

    1. 朱纬,王敏林,董雪明. 基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术. 电子测量技术. 2024(08): 189-194 .
    2. 张东波,汪立新,李灿. 光纤环多极对称绕法对Shupe误差抑制效果仿真分析. 北京航空航天大学学报. 2023(07): 1715-1721 .
    3. 王刚,万洵,崔志超,谢良平. 基于动态温控的光纤陀螺高温工作控制方案. 应用光学. 2023(05): 1153-1156 . 本站查看
    4. 吴雨萌,胡斌,毕聪志,孙桂林,雷明. 光纤环非互易相位误差尾纤补偿方法研究. 导航定位与授时. 2022(04): 149-155 .
    5. 周闻青,费宇明,洪桂杰,应光耀,叶欣. 高精度光纤陀螺零位误差的磁温特性研究. 应用光学. 2020(01): 220-227 . 本站查看
    6. 黄迟航,王斌华,胡桥,孔军,陈平. 陀螺光纤内的光纤环胶接固定方式分析. 机械研究与应用. 2020(06): 64-66+70 .

    Other cited types(4)

Catalog

    Article views (861) PDF downloads (111) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return