Lu Zhuangzhi, Zhou Xin, Wan Zhijiang, Wang Andi. Efficient star identification algorithm based on shape factor features[J]. Journal of Applied Optics, 2018, 39(3): 349-354. DOI: 10.5768/JAO201839.0302001
Citation: Lu Zhuangzhi, Zhou Xin, Wan Zhijiang, Wang Andi. Efficient star identification algorithm based on shape factor features[J]. Journal of Applied Optics, 2018, 39(3): 349-354. DOI: 10.5768/JAO201839.0302001

Efficient star identification algorithm based on shape factor features

More Information
  • Received Date: December 13, 2017
  • Revised Date: January 31, 2018
  • In response to the problems which exist in traditional triangle star identification algorithms including redundant matching and poor anti-noise performance, an efficient star identification algorithm based on shape factor feature was proposed. The algorithm presents the shape factor characteristic parameter of triangle and the direction information based on traditional triangle algorithm. Based on the traditional triangle algorithm, this algorithm introduces the feature parameters of shape factor and the direction information, and selects 4 observation stars in the field of view to form a pair of observation triangles, and then performs star point matching and recognition. Compared with the traditional triangle algorithm, the algorithm proposed increases the feature information amount of the star map when identifying star, reduces the redundancy when matching, and has the advantages of small storage space and high identification speed. The experimental results show that under the simulation conditions of standard deviation of 2 pixels and standard noise of 0.7 magnitude at the star position, the identification rate of the algorithm is more than 99%. Through the physical verification of the ground experiment, the average time of self-identification of star map is about 47 ms in the operation based on the FT-C6713 DSP hardware platform of 300 MHz, which has obvious advantages over traditional triangle star identification algorithm.
  • [1]
    梁斌, 朱海龙, 张涛, 等.星敏感器技术研究现状与发展趋势[J].中国光学, 2016, 9(1):16-29. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2007z2138

    LIANG Bin, ZHU Hailong, ZHANG Tao, et al. Research status and development tendency of star tracker technique[J].Chinese Optics, 2016, 9(1):16-29. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc2007z2138
    [2]
    张广军, 魏新国, 江洁.一种改进的三角形星图识别方法[J].航空学报, 2006, 27(6):1150-1154. doi: 10.3321/j.issn:1000-6893.2006.06.031

    ZHANG Guangjun, WEI Xinguo, JIANG Jie. Star map identification based on a modified triangle algorithm[J].Acta Aeronautica et Astronautica Sinica, 2006, 27(6):1150-1154. doi: 10.3321/j.issn:1000-6893.2006.06.031
    [3]
    李超兵, 袁艳艳, 王丹晔.基于特征图形匹配法的高效星图识别方法[J].中国空间科学技术, 2016, 36(4):9-16. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201604002

    LI Chaobing, YUAN Yanyan, WANG Danye. An efficient stellar map identification method based on characterized graphics matching method[J].Chinese Space Science and Technology, 2016, 36(4):9-16. http://d.old.wanfangdata.com.cn/Periodical/zgkjkxjs201604002
    [4]
    钱华明, 郎希开, 李猛.一种改进的栅格星图识别算法[J].传感器与微系统, 2017, 36(6):150-153. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201706042

    QIAN Huaming, LANG Xikai, LI Meng. A modified grid algorithm for star map identification[J]. Transducer and Microsystem Technologies, 2017, 36(6):150-153. http://d.old.wanfangdata.com.cn/Periodical/cgqjs201706042
    [5]
    MCCLINTOCK S, LUNNEY T, HASHIM A. A genetic algorithm environment for star pattern recognition[J]. Journal of Intelligent and Fuzzy Systems, 1998, 6(1):3-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC025978397
    [6]
    赵玥皎, 尹达一, 许春, 等.16mv精细导星星库构建与评价[J].应用光学, 2017, 38(3):385-391. http://d.old.wanfangdata.com.cn/Periodical/yygx201703008

    ZHAO Yuejiao, YIN Dayi, XU Chun, et al. Construction and evaluation of 16 mv fine guide star catalog[J]. Journal of Applied Optics, 2017, 38(3):385-391. http://d.old.wanfangdata.com.cn/Periodical/yygx201703008
    [7]
    伍吉仓, 邓康伟, 陈永奇.三角形形状因子对地壳形变计算精度的影响[J].大地测量与地球动力学, 2003, 23(3):26-30. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200303006

    WU Jicang, CONRAD Tang, CHEN Yongqi. Effects of triangle shape factor on precision of crustal deformation calculated[J]. Journal of Geodesy and Geodynamics, 2003, 23(3):26-30. http://d.old.wanfangdata.com.cn/Periodical/dkxbydz200303006
    [8]
    樊巧云, 陆壮志, 魏新国, 等.基于惯性比特征的三角形星图识别算法[J].红外与激光工程, 2012, 41(10):2838-2843. doi: 10.3969/j.issn.1007-2276.2012.10.052

    FAN Qiaoyun, LU Zhuangzhi, WEI Xinguo, et al. Triangle star identification algorithm based on inertia ratio[J]. Infrared and Laser Engineering, 2012, 41(10):2838-2843. doi: 10.3969/j.issn.1007-2276.2012.10.052
    [9]
    张同双, 郭敬明, 柏杨, 等.基于最大内角的三角形星图识别算法[J].光学精密工程, 2017, 25(1):208-216. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201701027

    ZHANG Tongshuang, GUO Jingming, BAI Yang, et al.Star identification algorithm based on the maximum interior angle in triangle[J].Optics and Precision Engineering, 2017, 25(1):208-216. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201701027
    [10]
    SHUSTER M D, OH S D. Three-axis attitude determination from vector observations[J].Journal of Guidance and Control, 1981, 4(1):70-77. doi: 10.2514/3.19717
  • Related Articles

    [1]HE Xuelan, LI Jiahui, WANG Tiebin, LI Wenchao, XING Jian, CUI Shuanglong, MENG Lingzhi. Research on three dimensional refractive index measurement of non-axisymmetric fiber optics[J]. Journal of Applied Optics, 2024, 45(6): 1314-1320. DOI: 10.5768/JAO202445.0608001
    [2]ZHANG Jing, LI Yongqian. Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure[J]. Journal of Applied Optics, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003
    [3]Lu Weitao, Zhang Shuanmin, Chen Anfeng, Qiang Wei, Wang Cheng, Wang Jian. High sensitive fiber strain sensor[J]. Journal of Applied Optics, 2017, 38(5): 848-851. DOI: 10.5768/JAO201738.0508002
    [4]Jia Zhenan, Duan Weiwei, Liu Yinggang, Zhang Jingle, Li Kang. Tapered multi-mode fiber temperature sensor based on simultaneous response of wavelength and intensity[J]. Journal of Applied Optics, 2017, 38(2): 331-335. DOI: 10.5768/JAO201738.0208001
    [5]Zhou Jing-hui, Sun Hao, Yang Shen, Hu Man-li, Ye Zeng-liang, Zhou Li-bin, Zhang Xiao-lei, Yuan Liu-tong. Optical fiber refractive index sensor with temperature calibration ability[J]. Journal of Applied Optics, 2015, 36(1): 140-144. DOI: 10.5768/JAO201536.0108001
    [6]GAO Ping-an, RONG Qiang-zhou, SUN Hao, HU Man-li. High-sensitive fiber-optic refractometer constructed by core-diameter-mismatch welding[J]. Journal of Applied Optics, 2013, 34(3): 542-546.
    [7]WANG Hong-liang, ZHANG Jing, QIAO Xue-guang, WANG Yu. Study on strain and temperature cross sensitivity of fiber Bragg grating sensor[J]. Journal of Applied Optics, 2008, 29(5): 804-807.
    [8]YANG Peng-ling, WANG Qun-shu, FENG Guo-bin, LIU Fu-hua, CHENG Jian-ping. A dynamic strain sensor with fiber Bragg gratings[J]. Journal of Applied Optics, 2008, 29(supp): 105-108.
    [9]YU Da-kuan, QIAO Xue-guang, JIA Zhen-an, WANG Min. Fiber Bragg grating sensor for detecting temperature and flowvelocity[J]. Journal of Applied Optics, 2006, 27(3): 228-231.
    [10]HAO Ai-hua, MAO Zhi-li, HE Feng-tao. Refractive Index Profile Measurement of Singlemode and Multimode Fiber[J]. Journal of Applied Optics, 2005, 26(5): 41-044.
  • Cited by

    Periodical cited type(2)

    1. 朱朝阳,叶伟,彭慧龙,陈昱坤. 倍增层Si浓度对β-FeSi_2/Si红外探测器性能的影响研究. 河南科技. 2025(01): 73-77 .
    2. 方小坤,叶伟,权贝贝,朱朝阳,萧生. Ⅰ型倍增层对异质SAM结构InSb-APD红外探测器性能的影响. 应用光学. 2024(03): 659-664 . 本站查看

    Other cited types(1)

Catalog

    Article views (561) PDF downloads (53) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return