Jia Zhenan, Duan Weiwei, Liu Yinggang, Zhang Jingle, Li Kang. Tapered multi-mode fiber temperature sensor based on simultaneous response of wavelength and intensity[J]. Journal of Applied Optics, 2017, 38(2): 331-335. DOI: 10.5768/JAO201738.0208001
Citation: Jia Zhenan, Duan Weiwei, Liu Yinggang, Zhang Jingle, Li Kang. Tapered multi-mode fiber temperature sensor based on simultaneous response of wavelength and intensity[J]. Journal of Applied Optics, 2017, 38(2): 331-335. DOI: 10.5768/JAO201738.0208001

Tapered multi-mode fiber temperature sensor based on simultaneous response of wavelength and intensity

More Information
  • Received Date: September 17, 2016
  • Revised Date: October 25, 2016
  • By combining ends of a multimode fiber with a length of 17 mm and single-mode fiber(SMF), multimode fiber is then subjected to a tapered treatment to obtain a tapered multimode fiber with a wavelength and intensity sensor. Temperature sensing characteristics of sensor in range of 30 ℃ ~ 80 ℃ were studied experimentally. Experimental results show that when ambient temperature changes, response sensitivity of sensor to temperature of interference trough near 1 542 nm can reach 0. 041 nm / ℃ and 0. 106 dB / ℃ respectively, and there is a good linear relationship between wavelength response and intensity response of sensor interference fringe. Based on this linear relationship between sensor wavelength response and intensity response, phase demodulation of interferometric fiber optic sensor can be realized by detecting intensity of sensor signal. This method provides a new idea for sensing and demodulating signal value.
  • [1]
    孙伟胜, 施解龙, 陈圆圆, 等.含耐高温涂覆层长周期光纤光栅的温度特性研究[J].光子学报, 2011, 40(10):1490-1493. http://d.old.wanfangdata.com.cn/Periodical/gzxb201110008

    Sun Weisheng, Shi Jielong, Chen Yuanyuan, et al. Temperature characteristics of long period fiber gratings contained high temperature resistant coating layer[J]. Acta Photonica Sinica, 2011, 40(10):1490-1493. http://d.old.wanfangdata.com.cn/Periodical/gzxb201110008
    [2]
    Liu Guigeng, Han Ming, Hou Weilin. High-resolution and fast-response fiber-optic temperature sensor using silicon fabry-perot cavity[J]. Optics Express, 2015, 23(6): 7237-7247. doi: 10.1364/OE.23.007237
    [3]
    Wang Pengfei, Ding Ming, Bo Lin, et al. Fiber-tip high-temperature sensor based on multimode interference[J]. Optics Letters, 2013, 38(22): 4617-4620. doi: 10.1364/OL.38.004617
    [4]
    Yang Hongjuan, Wang Shanshan, Wang Xin, et al. Temperature sensing in seawater based on microfiber knot resonator[J]. Sensors, 2014, 14: 18515-18524. doi: 10.3390/s141018515
    [5]
    Hu Juiming, Zheng Wenhao, Chen Jianzhi, et al. Temperature fiber sensors based on mach-zehnder interferometer with sturdy structured[J].IEEE Sensors Journal, 2015, 15(12): 6995-7000. doi: 10.1109/JSEN.2015.2469670
    [6]
    Xian Pei, Feng Guoying, Zhou Shouhuan. A compact and stable temperature sensor based on a gourd-shaped microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(1): 95-98. doi: 10.1109/LPT.2015.2487281
    [7]
    Ni Kai, Li Tao, Hu Limin, et al. Temperature-independent curvature sensor based on tapered photonic crystal fiber interferometer[J]. Optics Communication, 2012, 285: 5148-5150. doi: 10.1016/j.optcom.2012.08.037
    [8]
    付兴虎, 谢海洋, 朱洪彬, 等.基于锥形光子晶体光纤马赫-曾德尔干涉的曲率传感器实验研究[J].光学学报, 2015, 35(5): 0506002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201505009

    Fu Xinghu, Xie Hangyang, Zhu Hongbin, et al. Experimental research of curvature sensor eased on tapered photonic crystal fiber Mach-zehnder interferometer[J]. Acta Optica Sinica, 2015, 35(5): 0506002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201505009
    [9]
    Zhengtong Wei, Zhangqi Song, Xueliang Zhang, et al. Miniature temperature sensor based on optical microfiber[J]. Chinese Opticsletters, 2013, 11(11): 110602. http://cn.bing.com/academic/profile?id=699d78a1eef985f777c7ad0b97eda715&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    纪玉申, 付广伟, 付兴虎, 等.熔融拉锥型光子晶体光纤马赫-曾德尔干涉仪传感特性[J].光学学报, 2013, 33 (10): 1006005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201310009

    Ji Yushen, Fu Guangwei, Fu Xinghu, et al. Sensing characteristics of Mach-Zehnder Interferometer based on the fused tapered photonic crystal fiber sensor[J]. Acta Optica Sinica, 2013, 33(10): 1006005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201310009
    [11]
    付兴虎, 杨传庆, 王思文, 等.锥形三包层石英特种光纤折射率与温度传感器[J].光学学报, 2015, 35(12): 1206003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512011

    Fu Xinghu, Yang Chuanqing, Wang Siwen, et al. Refractive index and temperature sensor of tapered triple cladding quartz specialty fiber[J].Acta Optica Sinaca, 2015, 35(12): 1206003. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201512011
    [12]
    付广伟, 刘阳, 付兴虎, 等.镀有铜膜的锥形光子晶体光纤温度传感器[J].光电子·激光, 2015, 26(9):1639-1645. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201509001

    Fu Guangwei, Liu Yang, Fu Xinghu, et al. Tapered photonic crystal fiber temperature sensor based on evaporating Cu Film[J]. Journal of Optoelectronics·Laser, 2015, 26(9): 1639-1645. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201509001
    [13]
    Li Lecheng, Xia Li, Xie Zhenhai, et al. All-fiber Mach-Zehnder interferometers for sensing applications[J]. Optics Express, 2012, 20(10): 11109-11120. doi: 10.1364/OE.20.011109
    [14]
    Zhu Jingjing, Zhang Aping, Xia Tianhao, et al. Fiber-optic high-temperature sensor based on thin-core fiber modal interferometer[J]. IEEE Sensors Journal, 2010, 10(9): 1415-1418. doi: 10.1109/JSEN.2010.2042592
    [15]
    Geng Youfu, Li Xuejin, Tan Xiaoling, et al.High-sensitivity Mach-Zehnder interferometric temperature fiber sensor based on a waist-enlarged fusion bitaper[J].IEEE Sensors Journal, 2011, 11(11): 2891-2894. doi: 10.1109/JSEN.2011.2146769
    [16]
    卞继城, 郎婷婷, 俞文杰, 等.基于马赫-曾德尔干涉的温度和应变同时测量的光纤传感器研究[J].光电子·激光, 2015, 26(11): 2169-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201511019

    Bian Jicheng, Lang Tingting, Yu Wenjie, et al. Study of fiber sensor for the simultaneous measurement of temperature and strain based on Mach-Zehnder interferometer[J]. Journal of Optoelectronics·Laser, 2015, 26(11): 2169-2174. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdzjg201511019
    [17]
    童峥嵘, 郭阳, 杨秀峰, 等.基于多模-单模-多模结构和光纤布拉格光栅同时测量温度和折射率[J].光学精密工程, 2012, 20(5): 921-926. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201205002

    Tong Zhengrong, Guo Yang, Yang Xiufeng, et al. Simultaneous measurement of temperature and refractive index based on MSM structure combined with FBG[J].Optics and Precision Engineering, 2012, 20(5): 921-926. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201205002
    [18]
    苗银萍, 姚建铨.基于磁流体填充微结构光纤的温度特性研究[J].物理学报, 2013, 62(4): 044223. http://d.old.wanfangdata.com.cn/Periodical/wlxb201304045

    Miao Yinping, Yao Jianquan. Temperature sensitivity of microstructured optical fiber filled with ferrofluid[J]. Acta Phys. Sin., 2013, 62(4): 044223. http://d.old.wanfangdata.com.cn/Periodical/wlxb201304045
    [19]
    Sun Qizhen, Luo Haipeng, Luo Hongbo, et al. Multimode microfiber interferometer for dual-parameters sensing assisted by fresnel reflection[J]. Optics Express, 2015, 23(10): 12777-12783 doi: 10.1364/OE.23.012777
  • Related Articles

    [1]LI Zheng, XU Haoyu, LIANG Jingyuan, ZHANG Ying, KE Xizheng. Principle and research progress of four-quadrant detector spot detection[J]. Journal of Applied Optics, 2023, 44(5): 927-942. DOI: 10.5768/JAO202344.0509001
    [2]WANG Fubin, SUN Zhilin, WANG Shangzheng. Correlation analysis of gray scale and geometric features of femtosecond laser spot[J]. Journal of Applied Optics, 2020, 41(5): 1108-1116. DOI: 10.5768/JAO202041.0507002
    [3]CHEN Wenjian, SUN Weiping, DING Tianbao, LEI Junjie, DUAN Yuanyuan, LI Gang, HAN Yaofeng. Design of missile target angle measurement path based on laser spot time-sharing method[J]. Journal of Applied Optics, 2019, 40(6): 1004-1007. DOI: 10.5768/JAO201940.0601012
    [4]LIU Bohan, LAI Min, XIAO Shaorong. Method for detecting far-field spot uniformity of optical fiber output[J]. Journal of Applied Optics, 2019, 40(2): 356-362. DOI: 10.5768/JAO201940.0208003
    [5]Lu Hongqiang, Zhang Jingyue, Zhang Baoquan. Analysis of detection capability of shortwave infrared imaging system on laser spot[J]. Journal of Applied Optics, 2018, 39(4): 574-578. DOI: 10.5768/JAO201839.0406001
    [6]Xiao Xingwei, Ma Guolu, Zeng Guoying. Centering method for non-diffracting spot images based on correlation-coefficient[J]. Journal of Applied Optics, 2018, 39(4): 500-504. DOI: 10.5768/JAO201839.0402003
    [7]MU Rang-xiu, NING Zi-li, BI Bo-rui, HOU Feng-qian, XUE Chang-jia. Implementation of pulse peak holding circuit based on laser spot tracker[J]. Journal of Applied Optics, 2013, 34(6): 1047-1050.
    [8]CHEN Zhi-bin, LIU Yu-xiang, XUE Ming-xi, HOU Zhang-ya, LIU Bao-hua. Laser spot acquisition by lattice up-conversion board[J]. Journal of Applied Optics, 2011, 32(6): 1139-1144.
    [9]TANG Shu-gang, DANG Li-ping, BAI Bo. Morphological filter algorithm to improve positioning accuracy of multi-laser convergent spot center[J]. Journal of Applied Optics, 2008, 29(5): 693-696.
    [10]WANG Chun-yang, Li Jin-shi. Detection of laser spot drift[J]. Journal of Applied Optics, 2007, 28(2): 205-208.
  • Cited by

    Periodical cited type(0)

    Other cited types(2)

Catalog

    Article views (688) PDF downloads (81) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return