Zhang Linze, Wang Jingqi, Wu Wen. Image enhancement algorithm based on improved Kmeans clustering[J]. Journal of Applied Optics, 2016, 37(4): 549-554. DOI: 10.5768/JAO201637.0402003
Citation: Zhang Linze, Wang Jingqi, Wu Wen. Image enhancement algorithm based on improved Kmeans clustering[J]. Journal of Applied Optics, 2016, 37(4): 549-554. DOI: 10.5768/JAO201637.0402003

Image enhancement algorithm based on improved Kmeans clustering

More Information
  • In the case of lowlight conditions, the quality of the output image is not satisfactory provided by complementary metal oxide semiconductor (CMOS) imaging device.An image enhancement algorithm based on Kmeans clustering was proposed according to the characteristics of low illumination image, and the analysiscomparison of various algorithms.The clustering center k can be automatically determined by the histogram feature of original image,and the sub images can be enhanced by histogram equalization according to the information content of each sub image after pixel sets are divided into several nonoverlapping subsets by clustering.The experiment was carried out in CMOS imaging device using this method,the results shows that this algorithm can enhance the contrast of the image to 17 times of the original image, and the average gradient can be increased to 4 times under the condition of preserving the details of the image (information entropy) to about 98.6%.
  • Related Articles

    [1]ZHU Haojie, WANG Yu, MEI Fangfang, ZHOU Chuanqi, WANG Yujie, HOU Wenhui. Robust phase-coding method for absolute phase retrieval[J]. Journal of Applied Optics, 2024, 45(5): 966-974. DOI: 10.5768/JAO202445.0502004
    [2]LI Baoyu, ZHANG Feng, PENG Xia, LIU Yenan. K-means+SSA-Elman network visible light indoor location awareness algorithm[J]. Journal of Applied Optics, 2022, 43(3): 453-459. DOI: 10.5768/JAO202243.0302005
    [3]Wang Yuping. Multi-threshold SAR segmentation based on improved histogram PDE and two-dimensional Tsallis entropy[J]. Journal of Applied Optics, 2018, 39(6): 839-848. DOI: 10.5768/JAO201839.0602002
    [4]Zhao Yulan, Yuan Quande, Meng Xiangping. Double-image encryption algorithm based on discrete fractionalrandom transform and weighted histogram cross permutation[J]. Journal of Applied Optics, 2017, 38(6): 937-946. DOI: 10.5768/JAO201738.0602006
    [5]Liu Fang, Yu Wang-sheng. Object tracking based on background-weighted spatial histogram[J]. Journal of Applied Optics, 2015, 36(3): 391-397. DOI: 10.5768/JAO201536.0302002
    [6]JIANG Bin, SHI Feng, CUI Dong-xu, ZHANG Peng-hui, YUAN Yi-hui, ZHANG Jun-ju. IR target detection based on improved K-means clustering[J]. Journal of Applied Optics, 2012, 33(4): 766-769.
    [7]WU Qiang, WANG Xin-sai, HE Ming, WANG Wei-ping, LI Zhi-jun. Infrared image enhancement based on wavelet analysis and histogram[J]. Journal of Applied Optics, 2011, 32(3): 464-466.
    [8]JIANG Wen-tao, CHEN Wei-dong, QIAN Jun, LU Yang, HE Jun-feng, YUAN Qi, CHAI Ji-he, LIANG Hong-jun, . Real-time image enhancement based on FPGA[J]. Journal of Applied Optics, 2010, 31(6): 965-968.
    [9]GUO Jia, QIN Wen-gang, LIU Wei-guo. Adaptive algorithm for infrared target enhancement[J]. Journal of Applied Optics, 2009, 30(2): 357-360.
    [10]CHEN Guo-qun, FU Dong-mei. Infrared image enhancement based on gray clustering algorithm[J]. Journal of Applied Optics, 2007, 28(2): 142-145.
  • Cited by

    Periodical cited type(7)

    1. 江巨浪,刘国明,朱柱,黄忠,郑江云. 基于快速模糊聚类的动态多直方图均衡化算法. 电子学报. 2022(01): 167-176 .
    2. 闫哲,蒋砾,杨帆,罗志斌,贾赞,张巍,朱洪洋,陈如造,朱光明,郭小军,刘孟然. 基于双直方图均衡算法的红外图像增强. 红外技术. 2022(09): 944-950 .
    3. 韩少刚,江巨浪. 基于图像分割的双直方图均衡算法. 安庆师范大学学报(自然科学版). 2021(01): 66-69 .
    4. 范华春,张雅琼,纪超,陈光辉,张璋,凌靖,张金辉,卢国俊,周磊,高美. 车载综合观瞄系统的设计与实现. 应用光学. 2021(03): 383-391 . 本站查看
    5. 李德兵. 三维立体动画增强图像处理效果仿真研究. 计算机仿真. 2018(01): 201-205 .
    6. 黄鑫,肖世德,宋波. 监控视频中的车辆异常行为检测. 计算机系统应用. 2018(02): 125-131 .
    7. 张慧,梁银双. 多媒体监控视频图像显示真实性优化仿真. 计算机仿真. 2018(09): 199-202+257 .

    Other cited types(7)

Catalog

    Article views (1107) PDF downloads (92) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return