Wang Xiao-ping, Hu Xue-bing, Zhou Hua-fei, Qin Liang-zhong, Zhu Pei-dong, Wu Hong-gui. Experimental study on static characteristics of wind turbine blade withdigital image correlation method[J]. Journal of Applied Optics, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004
Citation: Wang Xiao-ping, Hu Xue-bing, Zhou Hua-fei, Qin Liang-zhong, Zhu Pei-dong, Wu Hong-gui. Experimental study on static characteristics of wind turbine blade withdigital image correlation method[J]. Journal of Applied Optics, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004

Experimental study on static characteristics of wind turbine blade withdigital image correlation method

More Information
  • A wind turbine blade was tested for the full-field 3D deformations under biaxial static loads by making use of digital image correlation method. The results show that the 3D displacements of the wind turbine blade are well distributed while the strains are not. Among the three displacements, the out-of-plane displacement is much larger than the in-plane displacement. The flapwise displacements and edgewise displacements of the wind turbine blade induced by biaxial loads increase as the load increases. In the full field of the wind turbine blade, the flapwise displacements along the spanwise increase gradually, reaching maximum at the blade tip. The edgewise displacements of the wind turbine blade are all compressive displacements, the maximum of which are generated in the middle part of the blade. The spanwise displacements generated by biaxial loading are almost 0 in the region of 0~41% of the blade length. In the rest region of the blade, the tensive spanwise displacements are generated at the beginning of the loading, and compressive spanwise displacements are yielded as the load increases.
  • [1]Burton T, Sharpe D, Jenkins N, et al. Wind energy handbook[M]. New York: John Wiley & Sons, 2001: 1-609.
    [2]International electrotechnical commision. IEC 61400-22 wind turbines part 22: comformity testing and certification[S]. Geneva: International Electro-technical Commision, 2010: 1-59.
    [3]Leblanc B, Niezrecki C, Avitabile P. et al. Full-field inspection of a wind turbine blade using three-dimensional digital image correlation[C]. Bellingham, Washington: SPIE Proceedings, 2011: 1-12.
    [4]Paquette J, Vandam J, Hughes S. Structural testing of 9 m carbon fiber wind turbine research blades[C]. Reno, Nevada: the AIAA 2007 Wind Energy Symposium, 2007: 1-12.
    [5]Jensen F M, Branner K, Nielsen P H, et al. Full scale test of a 34 m box girder 1: Data report[C]. Roskilde, Denmark: Ris- National Laboratory for Sustainable Energy, 2008: 1-151.
    [6]Cao Renjing, Liu Daoxing. Experimental investigation on static structrual characteristics of a horizontal axis wind turbine[J]. Acta Energiae Solaris Sinica, 2001, 4(22): 436-439.
    曹人靖, 刘道新. 水平轴风力机风轮静态结构特性实验研究[J]. 太阳能学报, 2001, 22(4): 436-439.
    [7]Yang Ting, Deng Wenchao, Yang He, et al. Static load strain test of wind turbine blades[J]. Research and Exploration in Laboratory, 2011, 11(30): 33-35, 39.
    杨婷, 杜文超, 杨贺, 等. 风电叶片静载荷应变测试试验[J]. 实验室研究与探索, 2011, 11(30): 33-35,39.
    [8]Li Haibo. Static test and analysis for wind turbine blades[J]. Power System and Clean Energy, 2013, 4(29): 100-104.
    李海波. 风力机叶片静力测试与分析[J]. 电网与清洁能源, 2013, 4(29): 100-104.
    [9]China National Standardization Management Committee. GB/T 25384-2010 Full-scale structure test of wind turbine blades of wind turbine[S]. Beijing:China Standard Press,2010:1-48.
    中国国家标准化管理委员会. GB/T 25384—2010 风力发电机组风轮叶片全尺寸结构试验[S]. 北京: 中国标准出版社, 2010: 1-48.
    [10]Malhotra P, Hyers R W, Manwell J F, et al. A review and design study of blade testing systems for utility-scale wind turbines[J]. Renewable and Sustainable Energy Review, 2012, 16(1): 284-292.
    [11]Yamaguchi I. A laser-speckle strain gauge[J]. Journal of Physics E: Scientific Instruments, 1981, 14(11): 1270-1273.
    [12]Peters W H, Ranson W F. Digital image techniques in experimental stress analysis[J]. Optical Engineering, 1982, 21(3): 427-431.
    [13]Rui Jiabai, Jin Guanchang, Xu Bingye. A new digital speckle correlation method and its application[J]. Acta Mechanica Sinica, 1994, 26(5): 599-607.
    芮嘉白, 金观昌, 徐秉业. 一种新的数字散斑相关方法及其应用[J]. 力学学报, 1994, 26(5): 599-607.
    [14]Yao Xuefeng, Lin Bisen, Jan Longhui, et al. Three-dimensions deformation field measurement combining digital speckle correlation technology with stereo photography[J]. Optical Technique, 2003, 29(4): 473-476, 479.
    姚学锋, 林碧森, 简龙晖, 等. 立体摄影术与数字散斑相关方法相结合应用研究三维变形场[J]. 光学技术, 2003, 29(4): 473-476, 479.
    [15]Shan Baohua, Ou Jinping, Zhao Renxiao, et al. Principles and applications of speckle image correlation digital technique[J]. Journal of Experimental Mechanics, 2003, 18(3): 409-418.
    单宝华, 欧进萍, 赵仁孝, 等. 散斑图像相关数字技术原理及应用[J]. 实验力学, 2003, 18(3): 409-418.
    [16]Sun Wei, He Xiaoyuan. Experimental studies on application of digital image correlation in measuring field of civil engineering[J]. Journal of Nanjing University of Aeronautics and Astronautics,2009,41(2): 271-275.
    孙伟, 何小元. 数字图像相关方法在土木测试领域中的实验研究[J]. 南京航空航天大学学报, 2009, 41(2): 271-275.
    [17]Dou Hongyao. Test and analysis of fullfield 3D deformation for a wind turbine blade[D]. Qinhuangdao:Yanshan University, 2014.
    豆红尧. 风电叶片全场三维变形测试及分析[D]. 秦皇岛: 燕山大学, 2014.
    [18]Branner K, Berring P, Berggreen C, et al. Torsional performance of wind turbine blades-part II: numerical validation[C]. Kyoto: Sixteenth International Conference on Composite Materials, 2007: 1-10.
  • Related Articles

    [1]ZHU Haojie, WANG Yu, MEI Fangfang, ZHOU Chuanqi, WANG Yujie, HOU Wenhui. Robust phase-coding method for absolute phase retrieval[J]. Journal of Applied Optics, 2024, 45(5): 966-974. DOI: 10.5768/JAO202445.0502004
    [2]ZHANG Guoming, HAO Zhidong, ZHAO Qi, ZHANG Zhiwen, CAI Bolin, LI Bing. Nonlinear errors correction based on trapezoidal plus sinusoidal phase shifting algorithm[J]. Journal of Applied Optics, 2022, 43(2): 304-310. DOI: 10.5768/JAO202243.0203005
    [3]LIU Lu, PAN Yanjuan, XI Dongdong, WANG Yuwei, TANG Qixing. Phase unwrapping errors correction for phase-encoding based on fringe projection profilometry[J]. Journal of Applied Optics, 2020, 41(5): 978-983. DOI: 10.5768/JAO202041.0502007
    [4]YANG Siyu, WAN Shengpeng, WANG Haoyu, SONG Zaobiao, HE Jiaxiang. Research and application of spectrum characteristics of single phase-shifted fiber Bragg grating[J]. Journal of Applied Optics, 2019, 40(2): 349-355. DOI: 10.5768/JAO201940.0208002
    [5]WANG Lin, HAN Xu, FU Yanjun, HUANG Chunzhi, SHI Yaoqun. Fast phase unwrapping algorithm for 3D measurement[J]. Journal of Applied Optics, 2019, 40(2): 271-277. DOI: 10.5768/JAO201940.0202005
    [6]Qiu Lei, Qian Bin, Fu Yanjun, Zhong Kejun. Three-dimensional shape measurement method based on sinusoidal and triangular fringe projection[J]. Journal of Applied Optics, 2018, 39(4): 522-527. DOI: 10.5768/JAO201839.0403002
    [7]LU Chao, LI Yong-xin. Absolute phase calculation for Fourier transform profilometry with colour coding grating[J]. Journal of Applied Optics, 2013, 34(5): 831-836.
    [8]TAO Ye-han, XU Xian-feng, LI Wen, ZHAO Jia-yi. Stitching technology in phase-shifting digital holography[J]. Journal of Applied Optics, 2011, 32(6): 1156-1160.
    [9]WANG Lu-yang, DA Fei-peng. Rapid 3D shape measurement based on color-encoded fringe projection[J]. Journal of Applied Optics, 2011, 32(2): 276-281.
    [10]FAN Zhi-gang, FU Qiang, CHEN Shou-qian, LU Tian-yu. ANew method for pupil phase mask optimization in wavefront coding system[J]. Journal of Applied Optics, 2011, 32(1): 1-6.
  • Cited by

    Periodical cited type(4)

    1. 李道京,高敬涵,崔岸婧,周凯,吴疆. 2m衍射口径星载双波长陆海激光雷达系统研究. 中国激光. 2022(03): 123-134 .
    2. 杜康,刘春雨,刘帅,宋伟阳,徐婷婷. 同轴超紧凑型主三镜一体化光学系统的设计. 激光与光电子学进展. 2020(07): 263-269 .
    3. 张龙,王孝坤,程强,胡海翔. 拼接式望远镜主镜衍射效应研究. 应用光学. 2020(03): 447-454 . 本站查看
    4. 蒲小琴,董全林,余子箫,张斯明,邵静怡,刘业楠,王军伟. 半主动激光导引头光学系统设计及线性度分析. 航天器环境工程. 2020(03): 303-309 .

    Other cited types(2)

Catalog

    Article views (1494) PDF downloads (151) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return