YANG Siyu, WAN Shengpeng, WANG Haoyu, SONG Zaobiao, HE Jiaxiang. Research and application of spectrum characteristics of single phase-shifted fiber Bragg grating[J]. Journal of Applied Optics, 2019, 40(2): 349-355. DOI: 10.5768/JAO201940.0208002
Citation: YANG Siyu, WAN Shengpeng, WANG Haoyu, SONG Zaobiao, HE Jiaxiang. Research and application of spectrum characteristics of single phase-shifted fiber Bragg grating[J]. Journal of Applied Optics, 2019, 40(2): 349-355. DOI: 10.5768/JAO201940.0208002

Research and application of spectrum characteristics of single phase-shifted fiber Bragg grating

More Information
  • Received Date: August 05, 2018
  • Revised Date: September 06, 2018
  • Narrow linewidth fiber lasers have lots of applications in fiber communication, fiber sensors, coherent detection and combination because of its narrow linewidth and low noise. According to the transfer matrix method, we simulated the transmission spectrum of single phase-shifted fiber grating by Matlab, analyzed the transmission spectrum of single phase-shifted fiber grating with the different phase-shifted magnitudes, locations, fiber grating lengths and the different refractive indicators of the core, and got the main factors affecting the transmittance, linewidth and position of the phase-shifted peak.Furthermore, we proposed a scheme of tunable narrow linewidth erbium-doped fiber laser using a phase-shifted fiber grating with a π phase-shifted and a location of phase-shifted at the midpoint as the filter window.
  • [1]
    范利净, 李永倩, 姚国珍.光纤光栅激光传感器与其研究进展[J].光通信技术, 2017, 41(1):37-40. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201701011

    FAN Lijing, LI Yongqian, YAO Guozhen. Optical fiber grating laser sensor and its research progress[J]. Optical Communication Technology, 2017, 41(1):37-40. http://d.old.wanfangdata.com.cn/Periodical/gtxjs201701011
    [2]
    毕卫红, 张闯.光纤Bragg光栅的反射特性研究[J].传感器技术, 2003, 22(8):18-20. doi: 10.3969/j.issn.1000-9787.2003.08.006

    BI Weihong, ZHANG Chuang. Research on the reflective properties of fiber Bragg grating[J]. Journal of Transducer Technology, 2003, 22(8):18-20. doi: 10.3969/j.issn.1000-9787.2003.08.006
    [3]
    魏佳菊, 梁一平, 戴特力.线性啁啾光纤布喇格光栅反射谱的数值模拟[J].激光技术, 2012, 36(5): 607-611. http://d.old.wanfangdata.com.cn/Periodical/jgjs201205008

    WEI Jiaju, LIANG Yiping, DAI Teli. Numerical analysis of reflection spectrum of linearly chirped fiber Bragg gratings[J]. Laser Technology, 2012, 36(5): 607-611. http://d.old.wanfangdata.com.cn/Periodical/jgjs201205008
    [4]
    王璐玮, 陈越, 赵宜鹏, 等.相移光纤光栅多重滤波特性研究及应用[J].光散射学报, 2015, 27(3): 291-298. http://d.old.wanfangdata.com.cn/Periodical/gssxb201503016

    WANG Luwei, CHEN Yue, ZHAO Yipeng, et al. Study on multiplex filter characteristics of phase-shifted fiber grating and its application[J]. The Journal of Light Scattering, 2015, 27(3): 291-298. http://d.old.wanfangdata.com.cn/Periodical/gssxb201503016
    [5]
    李晓兰, 张伟刚, 张珊珊, 等.引入调制结构形成的相移长周期光纤光栅研究[J].光学学报, 2011, 31(6):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201106007

    LI Xiaolan, ZHANG Weigang, ZHANG Shanshan, et al. Study of phase-shifted long period grating performed by adding modulated structure[J]. Acta Optica Sinica, 2011, 31(6):37-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201106007
    [6]
    赵冉冉, 何巍, 祝连庆.一种新型窄线宽掺铒光纤激光器[J].激光与红外, 2015, 45(5): 492-495. doi: 10.3969/j.issn.1001-5078.2015.05.005

    ZHAO Ranran, HE Wei, ZHU Lianqing. A novel narrow line-width erbium-doped fiber laser[J]. Laser & Infrared, 2015, 45(5): 492-495. doi: 10.3969/j.issn.1001-5078.2015.05.005
    [7]
    余华清.相移光纤光栅的有效反射率法研究[J].传感技术学报, 2007, 20(6): 1424-1427. doi: 10.3969/j.issn.1004-1699.2007.06.050

    YU Huaqing. Effective-index method for studying phase-shifted fiber grating[J]. Chinese Journal of Sensors and Actuators, 2007, 20(6): 1424-1427. doi: 10.3969/j.issn.1004-1699.2007.06.050
    [8]
    朱丹丹, 程淑红, 陈颖, 等.相移长周期光纤光栅传输谱的仿真分析[J].仪器仪表学报, 2006, 27(z2): 1063-1064. doi: 10.3321/j.issn:0254-3087.2006.z2.015

    ZHU Dandan, CHENG Shuhong, CHEN Ying, et al. Simulation analysis of phase-shifted long period gratings transmission spectrum[J]. Chinese Journal of Scientific Instrument, 2006, 27(z2): 1063-1064. doi: 10.3321/j.issn:0254-3087.2006.z2.015
    [9]
    李伍一, 马卫东, 林谦.微结构相移光纤光栅的反射谱特性分析[J].光通信研究, 2010(4):54-56. doi: 10.3969/j.issn.1005-8788.2010.04.017

    LI Wuyi, MA Weidong, LIN Qian. Analysis of the reflective spectrum characteristics of micro-structured fiber Bragg gratings[J]. Study on Optical Communications, 2010(4):54-56. doi: 10.3969/j.issn.1005-8788.2010.04.017
    [10]
    王霞元, 黄勇林.级联长周期光纤光栅的光谱特性研究[J].应用光学, 2012, 33(4): 821-826. http://yygx.xml-journal.net/article/id/10051

    WANG Xiayuan, HUANG Yonglin. Spectral characteristics of cascaded long-period gratings[J]. Journal of Applied Optics, 2012, 33(4): 821-826. http://yygx.xml-journal.net/article/id/10051
    [11]
    吴永红, 王忠, 张海明, 等.FBG多功能传感系统集成与应用[J].应用光学, 2018, 39(1):151-156. doi: 10.5768/JAO201839.0108001

    WU Yonghong, WANG Zhong, ZHANG Haiming, et al. Integration guidelines and application of FBG sensing system with multiple functions[J]. Journal of Applied Optics, 2018, 39(1):151-156. doi: 10.5768/JAO201839.0108001
    [12]
    WANG P, ZHAO H, LIU J, et al. Dynamic real-time calibration method for fiber Bragg grating wavelength demodulation system based on tunable Fabry-Perot filter[J]. Acta Optica Sinica, 2015, 35(8):0806006. doi: 10.3788/AOS201535.0806006
    [13]
    FERRARI G, MEWES M O, SCHRECK F, et al. A high-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier[J]. Optics Letters, 1999, 24(3):151-153. doi: 10.1364/OL.24.000151
    [14]
    QU R H, CAI H W. Narrow linewidth lasers with high stability[J]. Infrared & Laser Engineering, 2009, 38(6):1033-1038. http://cn.bing.com/academic/profile?id=4f6e7f72298209a6ed113f3c4d17c557&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    KIM H, SONG M. A fiber laser spectrometer demodulation of fiber bragg grating sensors for measurement linearity enhancement[J]. Journal of the Optical Society of Korea, 2013, 17(4):312-316. doi: 10.3807/JOSK.2013.17.4.312
    [16]
    KHAN M M, PANWAR N, DHAWAN R. Modified cantilever beam shaped FBG based accelerometer with self temperature compensation[J]. Sensors & Actuators A Physical, 2014, 205:79-85. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=61f1f0721c5a8a6b4dfc83939be39a8d
  • Related Articles

    [1]ZHANG Guoming, HAO Zhidong, ZHAO Qi, ZHANG Zhiwen, CAI Bolin, LI Bing. Nonlinear errors correction based on trapezoidal plus sinusoidal phase shifting algorithm[J]. Journal of Applied Optics, 2022, 43(2): 304-310. DOI: 10.5768/JAO202243.0203005
    [2]CAI Yawen, ZHANG Qingjun, LIU Jie, ZHANG Yue, LIU Jiuli. Multi-degree of freedom acquisition system based on wide-spectrum phase-shifting interferometry[J]. Journal of Applied Optics, 2021, 42(5): 775-781. DOI: 10.5768/JAO202142.0501003
    [3]ZHANG Kai, XUE Bin, WANG Zhiyang, WU Hanzhong. Focusing of scattering light by combining polarization phase shifting and digital optical phase conjugation[J]. Journal of Applied Optics, 2019, 40(1): 63-67. DOI: 10.5768/JAO201940.0101011
    [4]Yang Chen-xiao, Han Jun-he, Yao Bao-li, Li Ruo-ping, Huang Ming-ju. Phase shifter based on bacteriorhodopsin film and its application[J]. Journal of Applied Optics, 2015, 36(4): 618-623. DOI: 10.5768/JAO201536.0405004
    [5]Shang Zhong-yi, Li Wei-xian, Dong Ming-li, Duan Liang-jun. 3D shape measurement system based on fringe projection in 4-step phase shifting[J]. Journal of Applied Optics, 2015, 36(4): 584-589. DOI: 10.5768/JAO201536.0403005
    [6]WANG Xia-yuan, HUANG Yong-lin. Spectral characteristics of cascaded long-period gratings[J]. Journal of Applied Optics, 2012, 33(4): 821-826.
    [7]TAO Ye-han, XU Xian-feng, LI Wen, ZHAO Jia-yi. Stitching technology in phase-shifting digital holography[J]. Journal of Applied Optics, 2011, 32(6): 1156-1160.
    [8]CHEN Sheng-shi, OU Qiu-ye, NING Zi-li, XUE Chang-jia, JI Ming, ZHOU Li-hua, ZHANG Xiao-hui. Test setup for high power narrow pulsese miconductor laser[J]. Journal of Applied Optics, 2009, 30(4): 712-716.
    [9]BI Wei-hong, WU Guo-qing. Theoretical analysis of Bragg wavelength demodulation based on phaseshift fiber grating[J]. Journal of Applied Optics, 2006, 27(2): 140-143.
    [10]ZHU Ri-hong, CHEN Lei, WANG Qing, GAO Zhi-shan, HE Yong. Phase shift interferometry and its application[J]. Journal of Applied Optics, 2006, 27(2): 85-88.
  • Cited by

    Periodical cited type(8)

    1. 邵向鑫,刘成福,朱恒,江虹. 基于光功率补偿下的弱光栅光谱质量分析方法. 激光杂志. 2023(12): 132-138 .
    2. 聂鹏程,余先伦,刘嘉伟. 少模光纤布喇格光栅的光谱特性研究. 光通信技术. 2022(01): 16-19 .
    3. 滕碧红,陈柯宇,孙海信. 无线传感网络模糊图像复合光栅滤波识别算法. 激光杂志. 2022(04): 88-92 .
    4. 钟友坤,岑振宇,陆正杰. 基于传感技术的系统光纤光栅分布动态监测设计. 激光杂志. 2022(09): 188-192 .
    5. 解琳,佟璐. 大数据分析技术的光纤传感谱形复用技术研究. 激光杂志. 2021(01): 149-153 .
    6. 胡耀升,李涵阳. 基于紫外刻写相移光栅的温度应力同时测量传感器. 应用光学. 2021(01): 200-206 . 本站查看
    7. 董云辉,何巍,宋言明,孟凡勇. 纤芯包层复合结构FBG的光谱特性仿真研究. 光通信研究. 2021(03): 38-42+58 .
    8. 郝子鉴,卜胜利,李用希,李迪辉,韩仲学. 基于拉锥光纤布拉格光栅的法布里-珀罗应变传感器的仿真研究. 应用光学. 2020(05): 1129-1136 . 本站查看

    Other cited types(4)

Catalog

    Article views (1120) PDF downloads (36) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return