Zhang Ya-ya, Cui Jian-guo. Rapid microfabrication technology based on digital lithography projection system[J]. Journal of Applied Optics, 2015, 36(3): 448-453. DOI: 10.5768/JAO201536.0305001
Citation: Zhang Ya-ya, Cui Jian-guo. Rapid microfabrication technology based on digital lithography projection system[J]. Journal of Applied Optics, 2015, 36(3): 448-453. DOI: 10.5768/JAO201536.0305001

Rapid microfabrication technology based on digital lithography projection system

More Information
  • To design a cost-effective microfluidic chip-s processing method, which can quickly fabricate different size micro-channels on polydimethylsiloxane (PDMS) surface, we used the method depending on the imaging principle of commercial digital projector, carried on the simple configuration, and then got a reduced image named as digital lithography projection system (DLPS), which could be used to fabricate the micro-channel on the PDMS surface.Moreover, through lotus leaf effect and capillary adsorption effect experiments, the processing performance of DLPS was verified and applied. Results show that the DLPS can process microstructure on PDMS surface, the minimum stable machining precision can reach 40 m, through the simulation of lotus leaf effect ,the material surface-s hydrophobic angle is 1233. The DLPS can be used for rapid processing of microfluidic chip, and when the channel size is not very strict, this low-cost and high-efficiency can make the system completely suitable for general laboratory.
  • [1]George M. Whitesides. The origins and the future of microfluidics[J].Nature,2006,442(27):368-373.
    [2]Hong Ji, Liu Weiting, Chen Yuquan. Soft lithography technology[J]. Foreign Medical Sciences:Biomedical   Engineering Fascicle, 2001,24(3):134-137;141.
    洪吉,刘伟庭,陈裕泉. 软光刻技术[J]. 国外医学:生物医学工程分册, 2001,24(3):134-137;141.
    [3] Hong  C, Bao D,Thomas M S ,et al. Print-and-peel fabrication of microelectrodes[J]. Langmuir,2008,24(16): 8439-8442.
    [4]Yong Jiale,Yang Qing,Chen Feng,et al. Superhydrophobic PDMS surfaces with  three-dimensional (3D)pattern-dependent controllable adhesion[J]. Applied Surface Science,2014,288:579-583.
    [5]Attila Bonyár,Hunor Sántha, Máté Varga,et al. Characterization of rapid PDMS casting technique utilizing molding forms fabricated by 3D rapid prototyping technology (RPT)[J]. Int. J. Mater Form,2014,7:189-196.
    [6]Wang Wei,Zhao Siwei, Pan Tingrui. Lab-on-a-print: from a single polymer film to three-dimensional integrated microfluidics[J]. Lab Chip,2009,9:1133-1137.
    [7] Sones C L,Katis I, Mills B,et al. Laser-based printing and patterning for biological applications[J]. International Workshop on the Fabrication and Application of Microstructured Optical Devices,2014,1:27-28.
    [8]Chengliang Di,Song Hu,Wei Yan,et al. Interferometric scheme for High-Sensitivity coaxial focusing in projection lithography[J]. Photonics Journal, IEEE, 2014, 6(3): 1-10.
    [9]Waldbaur A, Waterkotte B, Schmitz K, et al. Maskless projection lithography for the fast and flexible generation of grayscale protein patterns[J]. Small, 2012, 8(10): 1570-1578.
    [10]Zhao S,Cong H, Pan T. Direct projection on dry-film photoresist (DP2): do-it-yourself three-dimensional polymer microfluidics[J]. Lab Chip,2009,9:1128-1132.
    [11]Zhang Yaya,Cui Jianguo. Economical microfluidic processing technology based on PDMS[J]. Hydromechatronics Engineering,2014,42(24):86-92.
    [12]Zhong Kejun, Gao Yiqing, Li Feng, et al. Fabrication of PDMS microlens array by digital maskless grayscale lithography and replica molding technique[J]. Optik, 2014,125 :2413-2416.
    [13]Qian Xiaogong. Optical projection technology[J]. Semiconductor Information, 1981,5:20-24.
    钱小工. 光学投影曝光技术[J]. 半导体情报,1981,5:20-24.
    [14]Xu Zhong, Wang Lei. Preparation and tribological behavior of a self-assembled film with bionic nonsmoothed surface[J]. Surface Technology, 2011,40(1):44-48,67.
    徐中,王磊. 三维自组装膜的制备及其摩擦磨损试验[J]. 表面技术,2011,40(1):44-48,67.
    [15]Jiang Jiahuan. Biomedical microsystem technology and application[M].Beijing:Chemical Industry Press,2006:1-380.
       蒋稼欢,生物医学微系统技术及应用[M].北京:化学工业出版社,2006:1-380.
    [16]Cui Jianguo,Wang Hong. Design of a peristaltic micropump driven by pneumatic pressure[J]. Fluid Machinery, 2012,40(12):47-50;38.
    崔建国,王洪. 一种负压驱动的蠕动微型泵设计[J]. 流体机械,2012,40(12):47-50;38.
    [17] Stohr U,Vulto P ,Hoppe P ,et al. High-resolution permanent photoresist laminate for microsystem applications[J]. Journal of Micro-Nanolithography Mems and Moems,2008,7(3):033009-1—033009-2.
    [18]Liu Haiyong, Zhou Jinyun, Lei Liang, et al. Design of reduced projection lens for digital lithography[J]. Opto-Electronic Engineering, 2013,40(7):57-62.
    刘海勇,周金运,雷亮,等.数字光刻缩微投影系统物镜的设计[J].光电工程,2013,40(7):57-62.
    [19]Ding Yuzhe,Hong Lingfei.Capillary-driven automatic packaging[J]. Lab Chip,2011,11:1464-1469.
    [20]Jiang Shuhui. Lotus effect and its application in bionics[J]. Biology Teaching,2013, 38(4):62-63.
    姜淑慧.荷叶效应及其在仿生学上的应用[J].生物学教学,2013,38(4):62-63.
    [21]Huang Shuo, Wu Zhonggui, Yi Hui, et al. Fabrication and properties of a self-cleaning hydrophobic coating[J]. Surface Technology, 2012, 41(1):106-108.
    黄硕,吴仲岿,易辉,等. 疏水型自清洁涂料的制备与性能研究[J]. 表面技术,2012,41(1):106-108.
    [22]Zhu Liqun, Jin Yan. Preparation and performance of hydrophobic inorganic organic film[J]. Surface Technology, 2005,34(3):1-5.
    朱立群,金燕. 具有憎水性的无机有机膜层的制备方法与研究进展[J]. 表面技术,2005,34(3):1-5.
  • Related Articles

    [1]SUN Hang, LIU Xiaochen, WANG Zijie, YU Yang, YANG Yong, ZHANG Xiaobei. Temperature sensing characteristics of a microsphere resonator embedded in a capillary[J]. Journal of Applied Optics, 2021, 42(5): 926-931. DOI: 10.5768/JAO202142.0508001
    [2]YUAN Xiyao, HU Yuan, HUANG Yunhan, XU Yichen, QIN Mingze, LI Wenxuan. Analysis of DMD diffraction effect and its generated stray light[J]. Journal of Applied Optics, 2021, 42(4): 630-635. DOI: 10.5768/JAO202142.0401009
    [3]LU Daju, ZHANG Kai, DONG Hang, XU Ming, SU Hua. Space-time characteristics of aero-optical effect around conformal turrets[J]. Journal of Applied Optics, 2019, 40(6): 1022-1032. DOI: 10.5768/JAO201940.0601015
    [4]LI Xu-dong, MI Jian-jun, RU Zhi-bing, ZHANG An-feng, HU Zheng-liang, ZHOU Xin-ni, LI Bao-jun, ZHANG Wan-lin, LIU Bing. Cat-s-eye effect based on active laser detection[J]. Journal of Applied Optics, 2014, 35(2): 342-347.
    [5]LI Shuang-jiang, LI Yun-xia, MENG Wen. Feasibility analysis of laser simulation of multi-path effect of approaching landing system[J]. Journal of Applied Optics, 2010, 31(6): 904-908.
    [6]YANG Geng, AN Bao-lin, XUE Jin-sheng, LIU Yu, FAN Yan-ping. Sniper detector based on cat eye effect[J]. Journal of Applied Optics, 2010, 31(5): 860-864.
    [7]JING Ru-hong, HUANG Zi-qiang. Black-matrix effect in digitized optical elements[J]. Journal of Applied Optics, 2010, 31(1): 47-50.
    [8]LIU Han-chen, HE Hui-ling, ZHANG Chong-hui, WANG An-xiang, WANG Ling, ZHAI Xue-jun, YU Hua-wa. Temperature effect of optic colophony lens[J]. Journal of Applied Optics, 2009, 30(3): 496-499.
    [9]SHENG Mei-ju, YUAN Shuai, WANG Jian-hua, ZHANG Jun. Application of multi-resolution analysis in extraction of laser micro-Doppler effect features[J]. Journal of Applied Optics, 2008, 29(4): 585-589.
    [10]HUANG Hai, BU Sheng-li. Research on Faraday Effect in Magneto-optic Glass[J]. Journal of Applied Optics, 2004, 25(4): 14-17.
  • Cited by

    Periodical cited type(8)

    1. 纪树泰,郑杰,刘逸松,崔建国. 基于共面斜叉指状电极的微流控芯片内液滴检测技术. 微纳电子技术. 2023(01): 94-101 .
    2. 王沂林,李嘉旭,李浩正,崔建国. 基于数字微流控芯片的液滴驱动及检测集成化. 微纳电子技术. 2022(08): 725-731+741 .
    3. 王洪,郑杰,闫延鹏,王淞,李浩正,崔建国. 数字微流控芯片上液滴驱动. 光学精密工程. 2020(11): 2488-2496 .
    4. 吕红艳,崔建国. 基于调频法的介电液体透镜研究. 激光与光电子学进展. 2019(13): 209-214 .
    5. 冷寒冰,袁伟,崔建国,崔祺铭. 基于恒加热功率的热损失型微型流量传感器. 仪表技术与传感器. 2018(12): 14-18+24 .
    6. 张雅雅,崔建国. 基于紫外臭氧光照技术的PDMS表面改性参数研究. 表面技术. 2016(03): 89-95 .
    7. 张雅雅,崔建国. 基于微波放电法的PDMS材料表面改性. 表面技术. 2015(09): 78-83 .
    8. 张雅雅,彭湉,王洪,李桂林,崔建国. 被动式液体微混合器芯片的研制. 重庆理工大学学报(自然科学). 2015(12): 127-132 .

    Other cited types(10)

Catalog

    Article views (1768) PDF downloads (176) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return