基于修补粒子群算法的红外目标跟踪

马天才, 陈淑静

马天才, 陈淑静. 基于修补粒子群算法的红外目标跟踪[J]. 应用光学, 2010, 31(5): 843-846.
引用本文: 马天才, 陈淑静. 基于修补粒子群算法的红外目标跟踪[J]. 应用光学, 2010, 31(5): 843-846.
MA Tian-cai, CHEN Shu-jing. Infrared target tracking based on repair particle swarm optimization[J]. Journal of Applied Optics, 2010, 31(5): 843-846.
Citation: MA Tian-cai, CHEN Shu-jing. Infrared target tracking based on repair particle swarm optimization[J]. Journal of Applied Optics, 2010, 31(5): 843-846.

基于修补粒子群算法的红外目标跟踪

详细信息
    通讯作者:

    马天才(1966-),男,河南驻马店人,副教授,主要从事电工电子技术的教学与科研工作。

  • 中图分类号: TN219;TP391.4

Infrared target tracking based on repair particle swarm optimization

  • 摘要: 为了避免粒子群算法退化和运算量大问题,提出利用修补粒子群算法对红外目标进行跟踪。该算法先用设置粒子的惯性因子对搜索到的红外目标位置进行修正,使粒子的位置达到局部最优点和全局最优点;然后通过粒子群收缩因子限制在边界搜索,消除目标位置的模糊性。利用该方法对空中红外战斗机图像跟踪仿真,结果显示在500次粒子迭代,100次跟踪中误差为2.83%,在最大惯性权值为1.2和最小惯性权值为0.3时跟踪效果最接近真实目标,且边缘最清晰。
    Abstract: To avoid the particle swarm algorithm degradation and complicated computation, a repair particle swarm algorithm for infrared target tracking is introduced. Firstly, the algorithm uses the inertia factor of the defined particles to correct the location of the infrared target detected, so that the location of particles reaches local optimum and global optimum. Secondly, PSO constriction factor is limited to border search to eliminate the ambiguity of the target location. Results show that there is an error of 2.83% in 500 granule iterations and 100 tracks. The tracking result is closest to real target with sharp edge when the maximum inertia weight is 1.2 and the minimum inertia weight is 0.3.
  • [1]EBERHART R C, SHI Y. Particle swarm optimi-zation: developments,applications and resources[C]. Piscataway, NJ: IEEE Press, 2001.
    [2]汪镭,康琦,吴启迪.基于多元模糊规划的微粒群优化算法[J].控制与决策,2003,18(1):45-48,57.
    WANG Lei, KANG Qi, WU Qi-di. Multi-optimum fuzzy programming based particle swarm optimi-zation[J]. Control and Decision, 2003,18(1):45-48,57.(in Chinese with an English abstract)
    [3]高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15.
    GAO Ying,XIE Sheng-li.Chaos particle swarm optimization algorithm[J]. Computer Science ,2004,31(8):13-15. (in Chinese with an English abstract)
    [4]许春晓,孙德宝,李宁.一种基于粒子群算法的红外运动小目标检测算法[J]. 红外技术,2004,26(5):10-12,17.
    XU Chun-xiao,SUN De-bao,LI Ning. Detection of infrared moving small target based on particle swarm optimal algorithm[J]. Infrared Technology,2004,26(5):10-12,17. (in Chinese with an English abstract)
    [5]孙小炜,李言俊,陈义.一种新的红外目标跟踪方法[J].宇航学报,2008,29(5):1637-1642,1647.
    SUN Xiao-wei,LI Yan-jun,CHEN Yi. A novel infrared object tracking method[J]. Journal of Astronautics,2008,29(5):1637-1642,1647. (in Chinese with an English abstract)
    [6]寇蔚,孙丰瑞,杨立.多粒子群优化算法和RB神经网络在缺陷故障参数红外智能识别中的应用[J]. 数据采集与处理.2008,23(9):67-69.
    KOU Wei, SUN Feng-rui,YANG Li. Application of multi-PSO algorithm and RBF neural network in intelligent identification of defect parameters in infrared NDT/E[J]. Journal of Data Acquisition and Processing .2008,23(9):67-69. (in Chinese with an English abstract)
    [7]朱玉平.一种改进粒子群优化算法[J].计算机技术与发展,2008,18(11):106-108.
    ZHU Yu-ping.An algorithm of modified particle swarm optimization[J]. Computer Technology and Development,2008,18(11):106-108. (in Chinese with an English abstract)
    [8]李智.改进型粒子群算法在气控液压换向阀设计参数优化中的应用[J].液压与气动, 2003,12:36-38.
    LI Zhi.Application of improved particle swarm algorithm in optimization desigh of air controlled hydraulic operated directional control valves[J]. Chinese Hydraulics and Pneumatics,2003,12:36-38. (in Chinese with an English abstract)
计量
  • 文章访问数:  2194
  • HTML全文浏览量:  93
  • PDF下载量:  876
  • 被引次数: 0
出版历程
  • 刊出日期:  2010-09-14

目录

    /

    返回文章
    返回