PSD analysis and control strategy of optical component polishing
-
摘要:
在光学加工领域,采用功率谱密度(power spectral density, PSD)对误差频谱方面信息进行表征,但是功率谱密度是表面误差统计信息,不如峰谷值 (peak-valley,PV)和均方根值(root mean square,RMS)直观。为了分析功率谱密度与工艺参数之间的关系,该文从PSD定义出发,分析了随机面形轮廓不同参数对光学PSD的影响规律,总结了PSD控制的要点,在平面玻璃上对数控抛光典型路径下加工的PSD曲线进行分析。分析结果表明:PSD与随机轮廓幅值、频率分布有关,相位对它几乎无影响;在RMS接近情况下,PSD线性拟合斜率和RMS Slope随随机轮廓的自相关长度增加而下降;短程加工路径相较于长程有序路径能够有效抑制PSD曲线峰值,使得光学元件符合频谱抑制要求。
Abstract:In the field of optical fabrication, the power spectral density (PSD) is used to characterize the error spectrum. However, the PSD is the statistical information of surface error, which is not as intuitive as peak-valley (PV) and root mean square (RMS). In order to analyze the relationship between PSD and process parameters, based on the definition of PSD, the influence of different parameters of random surface contour on optical PSD was analyzed, and summarized the key control points of PSD. Then, the PSD curves processed under the typical paths of numerical control polishing were analyzed on flat glass. The results show that the PSD is correlated with the amplitude and frequency distribution of random contour, and the phase has almost no influence on it. When the RMS is close, the slope of PSD linear fitting and RMS Slope decreases with the increase of the auto-correlation length of the random profile. The short-range machining path can effectively suppress the peak value of PSD curve compared with the long-range ordered path, which makes the optical element meet the requirements of spectrum suppression.
-
-
表 1 6条RMS接近的随机轮廓评价参数
Table 1 Evaluation parameters of six curves of random profile with RMS approximation
参数
名称曲线编号 1 2 3 4 5 6 RMS/mm 0.0137 0.0137 0.0136 0.0139 0.0138 0.0137 RMS
Slope0.4915 0.2561 0.0992 0.0574 0.0256 0.013 自相关
长度/mm0.0476 0.0971 0.21252 0.50755 1.0826 2.1067 PSD曲
线拟合
斜率−3.56145 −3.97554 −4.29558 −4.47599 −4.57322 −4.6028 -
[1] KIMMEL R K , PARKS R E. ISO 10110 Optics and optical instruments preparation of drawings for optical elements and systems[S]. Washington DC: OSA Standards Committee, 1995.
[2] 李智钢, 鲍振军, 朱衡. 多磨头数控抛光对大口径离轴抛物面镜中频误差的抑制[J]. 强激光与粒子束,2018,30(6):41-46. doi: 10.11884/HPLPB201830.170457 LI ZhiGang, BAO Zhenjun, ZHU Heng, et al. Restraining mid-spatial-frequency error of large-size off-axis parabolic mirrors by multi-tool NC polishing[J]. High Power Laser and Particle Beams,2018,30(6):41-46. doi: 10.11884/HPLPB201830.170457
[3] 李富仁, 王贵林, 陈善勇, 等. 强光光学零件加工误差频谱分析与控制方法研究[J]. 航空精密制造技术,2013,49(4):1-4. doi: 10.3969/j.issn.1003-5451.2013.04.001 LI Furen, WANG GuiLin, CHEN Shanyong, et al. Study on spectrum characteristics and controlling method of machining errors of optical elements used in high power laser system[J]. Aviation Precision Manufacturing Technology,2013,49(4):1-4. doi: 10.3969/j.issn.1003-5451.2013.04.001
[4] 王贵林, 李完小, 向纪邦. 强光光学零件磁流变抛光误差的频谱特征与演变研究[J]. 航空精密制造技术,2019,55(1):6-9. WANG Guilin, LI Wanxiao, XIANG Jibang. Spectral feature and evolvement of machining error of high-power optical elements in magnetorheological finishing[J]. Aviation Precision Manufacturing Technology,2019,55(1):6-9.
[5] SHIRAISHI M, OSHINO T, MURAKAMI K, et al. Flare modeling and calculation on EUV optics[J]. SPIE,2010,7636:763629.
[6] KATSUHIKO M, TETSUYA O, HIROYUKI K, et al. Development progress of optics for extreme ultraviolet lithography at Nikon[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS,2009,8(4):041507. doi: 10.1117/1.3238522
[7] AIKENS D M. WOLFE C R, LAWSON J K Use of power spectral density (PSD) functions in specifying optics for the national ignition facility[J]. SPIE,1995,2576:281-292.
[8] 钟波, 陈贤华, 王健, 等. 高精度离轴非球面透镜的制造与检测[J]. 红外与激光工程, 2018, 47(7): 0718003-1-8. ZHONG Bo, CHEN Xianhua, WANG Jian. Fabrication and test of high-precision off-axis aspheric lens[J]. Infrared and Laser Engineering. 2018, 47(7): 0718003-1-8.
[9] 陈建超. 超精密加工表面粗糙度测量方法对比及功率谱密度评价[D]. 哈尔滨: 哈尔滨工业大学, 2009. CHEN Jianchao. Comparison of ultra precision machined surface roughness measurement methods and power spectral density characterization[D]. Harbin: Harbin Institute of Technology, 2009.
[10] 张昊宇, 钟波, 赵世杰, 等. 光学表面非均匀中频误差的评价与修正[J]. 应用光学,2015,36(2):295-299. ZHANG Haoyu, ZHONG Bo, ZHAO Shijie, et al. Evaluation and modification of nonuniform mid-spatial frequency error in optic surface[J]. Journal of Applied Optics,2015,36(2):295-299.
[11] LIAO D, YUAN Z, TANG C, et al. Mid-spatial frequency error (PSD-2) of optics induced during CCOS and full-aperture polishing[J]. Journal of the European Optical Society,2013,8:13031-13035. doi: 10.2971/jeos.2013.13031
[12] ALCOCK S G, LUDBROOK G D, OWEN T, et al. Using the power spectral density method to characterize the surface topography of optical surfaces[J]. SPIE,2010,7801:780108.
[13] SEMI. MF1811-97:Guide for estimating the power spectral density function and related finish parameters from surface profile data[S]. Washington DC: ASTM , 2016.
[14] MA Zhanlong, PENG Lirong, WANG Junlin. Ultra-smooth polishing of high-precision optical surface[J]. Optik,2013,124(24):6586-6589. doi: 10.1016/j.ijleo.2013.05.093
[15] DUNN C, WALKER D D, BEAUCAMP A. et al, Improving surface PSD using a random tool path[J]. Frontiers in Optics,2008:OThB5.
[16] TIAN Huang, ZHAO Dong, CAO Zhongchen. Trajectory planning of optical polishing based on optimized implementation of dwell time[J]. Precision Engineering,2020,62:223-231. doi: 10.1016/j.precisioneng.2019.12.006
[17] BERGSTRÖM D. Rough surface generation & analysis [EB/OL]. ( 2012-2-26) [2022-6-5]. http://www.mysimlabs.com/surface_generation.html
-
期刊类型引用(1)
1. 古兆兵, 郝淑杰, 王雷, 许荣国, 阴万宏. 一种基于旋转1/4波片法的激光偏振度测量仪. 应用光学. 2018(06): 936-941 . 本站查看
其他类型引用(0)