[1]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms[J]. Physica Dnonlinear Phenomena, 1992, 60(14):259268.
[2]Lysaker M, Lundervold A, Tai X C. Noise removal using fourthorder partial differential equation with applications to medical magnetic resonance images in space and time[J]. IEEE Transactions on Image Processing, 2003, 12(12):1579 1590.
[3]Bredies K, Kunisch K, Pock T. Total generalized variation[J]. Siam Journal on Imaging Sciences, 2010, 3(3):492526.
[4]Zhu W, Chan T. Image denoising using mean curvature of image surface[J]. Siam Journal on Imaging Sciences, 2012, 5(1):132.
[5]Blomgren P , Chan T F. Color TV: total variation methods for restoration of vectorvalued images[J]. IEEE Transactions on Image Processing, 1998, 7(3):304309.
[6]Bresson X, Chan T F. Fast dual minimization of the vectorial total variation norm and applications to color image processing[J]. Inverse Problems & Imaging, 2008, 2(4):455484.
[7]Miyata T, Sakai Y. Vectorized total variation defined by weighted L infinity norm for utilizing inter channel dependency[C]// Image Processing (ICIP), 2012 19th IEEE International Conference on IEEE, Sept.30Oct.3,2012,Orlando, FL.USA:IEEE,c2012:30573060.
[8]Ono S, Yamada I. A convex regularizer for reducing color artifact in color image recovery[C]// Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on IEEE, June 2328,2013,Portland, OR.USA:IEEE,c2013:17751781.
[9]Bredies K. Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty[J]. Lecture Notes in Computer Science, 2014,8293:4477.
[10]Miyata T. L infinity total generalized variation for color image recovery[C]// Image Processing (ICIP), 2013 20th IEEE International Conference on IEEE, Sept.1518, Melbourne, VIC.USA:IEEE,c2013:449453.
[11]Carlos B L, Ke C. On highorder denoising models and fast algorithms for vectorvalued images[J]. IEEE Transactions on Image Processing, 2010, 19(6):15181527.
[12]Sun Li. A splitting mean curvaturebased model for color image denoising[J]. Journal of Lanzhou University(Natural Sciences), 2012,48(3):128132.
孙莉. 一种基于平均曲率的彩色图像去噪分裂模型[J]. 兰州大学学报:自然科学版, 2012, 48(3):128132.
[13]Hamza A B, Luque E P L, Martínez A J, et al. Removing noise and preserving details with relaxed median filters[J]. Journal of Mathematical Imaging & Vision, 1999, 11(2):161177.
[14]Chang Liangliang, Wang Guanglong. Denoising method for mixed noise based on median filter and lifting wavelet transform[J]. Journal of Applied Optics, 2012, 33(5):894898.
常亮亮, 王广龙. 基于中值滤波和提升小波分析的图像去噪方法研究[J]. 应用光学, 2012, 33(5):894898.
[15]Li Jinlun, Cui Shaohui, Wang Ming. Threshold denoising method for mixed noise based on improved median filter and lifting wavelet transform[J]. Journal of Applied Optics, 2014, 35(5):817822.
李金伦, 崔少辉, 汪明. 基于改进中值滤波和提升小波变换的阈值去噪方法研究[J]. 应用光学, 2014, 35(5):817822.
[16]You Y L, Kaveh M . Fourthorder partial differential equations for noise removal.[J]. IEEE Transactions on Image Processing, 2000, 9(10):17231730.
[17]Rajan J, Kannan K, Kaimal M R. An improved hybrid model for molecular image denoising[J]. Journal of Mathematical Imaging & Vision, 2008, 31(1):7379.
|