一种提高干涉相位识别精度的方法

杨练根, 刘丙康, 王选择, 翟中生

杨练根, 刘丙康, 王选择, 翟中生. 一种提高干涉相位识别精度的方法[J]. 应用光学, 2015, 36(4): 590-595. DOI: 10.5768/JAO201536.0403006
引用本文: 杨练根, 刘丙康, 王选择, 翟中生. 一种提高干涉相位识别精度的方法[J]. 应用光学, 2015, 36(4): 590-595. DOI: 10.5768/JAO201536.0403006
Yang Lian-gen, Liu Bing-kang, Wang Xuan-ze, Zhai Zhong-sheng. Method for improving precision of interferometric phase-recognization[J]. Journal of Applied Optics, 2015, 36(4): 590-595. DOI: 10.5768/JAO201536.0403006
Citation: Yang Lian-gen, Liu Bing-kang, Wang Xuan-ze, Zhai Zhong-sheng. Method for improving precision of interferometric phase-recognization[J]. Journal of Applied Optics, 2015, 36(4): 590-595. DOI: 10.5768/JAO201536.0403006

一种提高干涉相位识别精度的方法

基金项目: 

国家自然科学基金(51275157;51175154);天津大学精密测试技术及仪器国家重点实验室开放基金(PIL1209)

详细信息
    通讯作者:

    杨练根(1965-),男,湖南平江人,博士,教授,主要从事精密测量技术及仪器方面的研究。 Email:yanglg@mail.hbut.edu.cn

  • 中图分类号: TH741

Method for improving precision of interferometric phase-recognization

  • 摘要: 针对开环相移驱动下的单色光干涉测量,提出一种满足四步法的高精度相位识别的方法。首先选取干涉场中存在适当相位差的两像素点,建立相移驱动单周期内两像素点灰度序列值之间的干涉方程组。运用椭圆拟合获取相应干涉方程组参数,然后通过反算序列相位确定逐点驱动步长或序列相位信息。结合序列相位信息,运用Lagrange抛物插值算法,设计计算满足四步法的4幅干涉图,并计算各像素点的初相位。最后,运用多波长算法计算表面形貌并进行误差分析。实验表明:计算得到的方波多刻线样板的Ra值为0.439 0 m,测量误差为0.23%,此方法降低了对测量条件的硬件与环境要求,满足表面形貌高精度测量的要求。
    Abstract: For monochromatic light interferometry under open-loop phase shifter, a high precision method for phase recognization was developed to satisfy four-step phase-shift algorithm. Firstly two pixels with suitable phase-difference were selected from the interference field, and the interference equations of the two pixels gray values were established in one phase-shifting cycle. Secondly, the interference equations parameters could be obtained by using ellipse fitting algorithm, and the point-to-point driven step length and sequence phases could be determined through back calculation of sequence phases. Then four interference gray scales meeting the four-step phase-shift algorithm were designed and calculated through Lagrange parabolic interpolation, which were used to calculate the initial phase of every pixel. Finally, the surface topography was calculated through multi-wavelength algorithm and the measurement errors were analyzed. Experimental results show that the Ra value of square wave specimen with multiple grooves is 0.4390m, and the measurement error is 0.23%. This method decreases the requirement for hardware and environment. It can meet the high precision demands of surface topography measurement.
  • [1]Song L M, Dong X X, Xi J T, et al. A new phase unwrapping algorithm based on Three wavelength phase shift profilometry method[J]. Optics & Laser Technology, 2013, 45: 319-329.
    [2]Takamasa S, Zhao X F, Osami S. Phaselocked phase-shifting laser diode interferometer with photothermal modulation[J]. Applied Optics, 2001, 40(13): 2126-2131.
    [3]Luo Zhiyong, Chen Zhaohui, Gu Yingzi, et al. Five-bucket phase-shifting algorithm based on numerical simulation[J]. Acta Optica Sinica, 2006, 26(11): 1687-1690.
    罗志勇, 陈朝晖, 顾英姿, 等. 基于数值模拟的高准确度五步相移算法研究[J]. 光学学报, 2006, 26(11):1687-1690.
    [4]Jun-ichi K, Lchirou Y. Phase-shifting fringe analysis for laser diode wavelength-scanning interferometer[J]. Optical Review, 2000, 7(2): 158-163.
    [5]Shan Xiaoqin, Zhu Rihong, Li Jianxin. Phase extraction for single frame interferogram based on 2D Fourier transform[J]. Journal of Applied Optics, 2013, 34(5): 802-808.
    单小琴, 朱日宏, 李建欣. 基于二维傅里叶变换的单帧干涉图相位提取方法[J]. 应用光学, 2013, 34(5): 802-808.
    [6]Hao Q, Zhu Q D, Hu Y. Random phase-shifting interferometry without accurately controlling or calibrating the phase shifts[J]. Optics Letters, 2009, 34(8): 1288-1290.
    [7]Liu Dong, Yang Yongying, Tian Chao, et al. Study on phase retrieval from single close fringe pattern with high precision[J]. Chinese Journal of Lasers, 2010, 37(2): 531-536.
    刘东, 杨甬英, 田超, 等. 高精度单幅闭合条纹干涉图相位重构技术[J]. 中国激光, 2010, 37(2): 531-536.
    [8]Hui Mei. Study on the theory and algorithms of phase-stepping interferometry[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics of CAS,2001.
    惠梅. 表面微观形貌测量中相移干涉术的算法与实验研究[D]. 西安:中国科学院西安光学精密机械研究所, 2001.
    [9]Kamel H, Frederic C. Two-wavelength interferometry: extended range and accurate optical path difference analytical eatimator[J]. J.Opt. Soc. Am. A, 2009, 26(12): 2503-2511.
    [10]Warnasooriya N, Kim M K. LED-based multi-wavelength phase imaging interference microscopy[J]. Optics Express, 2007, 15(15): 9239-9247.
    [11]Christopher J M, Philip R B, Vincent C P. Quantitative phase imaging by three-wavelength digital holography[J]. Optics Express, 2008, 16(13): 9753-9764.
    [12]Nilanthi W, Myung K K. Quantitative phase imaging using three-wavelength optical phase unwrraping[J]. Journal of Modern Optics, 2009, 56(1): 67-74.
     
     
     
    (上接第571页)

    陶本藻,姚宜斌. 基于多面核函数配置型模型的参数估计[J].武汉大学学报:信息科学版,2003,28(5):547-550
    [15]Cao Tianning,Bai Jian, Kong Yanbo. Application of CQG-Ⅱshop digital interferometer in several special testing cases[J]. Optical Technology,2001,27(6):562-563.
    曹天宁,白剑,孔燕波.CGQ-II车间数字干涉仪的几种特殊检测的应用[J].光学技术,2001,27(6):562-563.
     
计量
  • 文章访问数:  1602
  • HTML全文浏览量:  75
  • PDF下载量:  173
  • 被引次数: 0
出版历程

目录

    /

    返回文章
    返回