程瑶, 许文斌, 刘云阳. 基于角度交会的二维坐标图像测量系统[J]. 应用光学, 2024, 45(2): 438-445. DOI: 10.5768/JAO202445.0203006
引用本文: 程瑶, 许文斌, 刘云阳. 基于角度交会的二维坐标图像测量系统[J]. 应用光学, 2024, 45(2): 438-445. DOI: 10.5768/JAO202445.0203006
CHENG Yao, XU Wenbin, LIU Yunyang. Two-dimensional coordinate image measurement system based on angle intersection[J]. Journal of Applied Optics, 2024, 45(2): 438-445. DOI: 10.5768/JAO202445.0203006
Citation: CHENG Yao, XU Wenbin, LIU Yunyang. Two-dimensional coordinate image measurement system based on angle intersection[J]. Journal of Applied Optics, 2024, 45(2): 438-445. DOI: 10.5768/JAO202445.0203006

基于角度交会的二维坐标图像测量系统

Two-dimensional coordinate image measurement system based on angle intersection

  • 摘要: 针对基准平面障碍物检测定位问题,设计了一种采用角度交会法测量二维坐标的嵌入式图像检测系统。二维坐标测量系统采用双线法标定线阵CCD图像传感器,并采用角度交会法对被测对象进行坐标计算,从而测得未修正的二维坐标测量结果。采用控制变量法分别测量X轴和Y轴坐标,使用Matlab软件对数据进行处理,并对X轴和Y轴测量误差分别进行多项式线性拟合,进而得到坐标修正公式,修正的二维坐标误差明显变小。实验结果表明:基于角度交会的二维坐标图像测量系统能够实时、准确、快速和可靠地测量二维坐标,为基准平面障碍物二维坐标测量定位提供了一种可行的方案,具有一定的应用价值和意义。

     

    Abstract: Aiming at the problem of detection and positioning of reference plane obstacles, an embedded image detection system using angle intersection method to measure two-dimensional coordinates was designed. The two-line method was adopted to calibrate the linear array CCD image sensor by two-dimensional coordinate measurement system, and the angle intersection method was used to calculate the coordinates of the measured object, so that the uncorrected two-dimensional coordinate measurement results were obtained. The control variable method was used to measure the coordinates of X axis and Y axis, respectively, the Matlab software was used to process the data, and the polynomial linear fitting of the measurement errors of X axis and Y axis was carried out respectively to obtain the coordinate correction formula, in which the corrected two-dimensional coordinate errors became significantly smaller. The experimental results show that the two-dimensional coordinate image measurement system based on angle intersection can measure two-dimensional coordinates in real time, accurately, quickly and reliably, and provides a feasible scheme for two-dimensional coordinate measurement of reference plane obstacles, which has certain application values and significance.

     

/

返回文章
返回