张静, 李永倩. 基于无芯-少模-无芯光纤结构的温度传感特性研究[J]. 应用光学, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003
引用本文: 张静, 李永倩. 基于无芯-少模-无芯光纤结构的温度传感特性研究[J]. 应用光学, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003
ZHANG Jing, LI Yongqian. Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure[J]. Journal of Applied Optics, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003
Citation: ZHANG Jing, LI Yongqian. Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure[J]. Journal of Applied Optics, 2022, 43(1): 167-170. DOI: 10.5768/JAO202243.0108003

基于无芯-少模-无芯光纤结构的温度传感特性研究

Temperature sensing characteristics based on coreless- few mode-coreless optical fiber structure

  • 摘要: 提出了一种基于无芯-少模-无芯光纤结构的温度传感器,对传感器进行了理论分析和实验研究。该传感器将无芯光纤(coreless fiber, CLF)与少模光纤(few-mode fiber, FMF)同轴熔接,构建无芯-少模-无芯的光纤结构,结构两端熔接单模(single mode fiber, SMF)光纤作为输入输出光纤,第1段无芯光纤与单模光纤的模式失配起到激发高阶模的作用,少模光纤中的LP01与LP11两种模式沿少模光纤纤芯传输,在第2段无芯光纤的作用下LP01与LP11两种模式重新耦合回单模光纤,LP01与LP11两种模式发生干涉,形成干涉光谱。当外界温度变化时,两种模式的光程差发生变化,干涉光谱的干涉波谷发生漂移,选取2个不同的干涉波谷作为特征波长,进行实验分析。实验结果表明:波长在1 550 nm和1 534 nm附近的干涉谷均发生红移,相应的温度灵敏度分别为68 pm/℃和44.5 pm/℃。该传感结构制作简单、灵敏度高,有很好的应用前景。

     

    Abstract: A temperature sensor based on coreless-few mode-coreless optical fiber structure was proposed for theoretical analysis and experimental study. The coreless fiber (CLF) and the few-mode fiber (FMF) were fused together to form a coreless-few mode-coreless optical fiber structure, and the single-mode fiber (SMF) was fused at both ends of the structure as input and output fiber. The mode mismatch between the first section of coreless fiber and single-mode fiber could excite higher-order modes. The two modes of LP01 and LP11 in the few-mode fiber were transmitted along the core of the few-mode fiber. Under the action of the second section coreless fiber, the two modes were recoupled back to the single-mode fiber, and the two modes interfered to form an interference spectrum. When the outside temperature changed, the optical path difference between the two modes also changed, and the interference troughs of the interference spectrum were shifted. Two different interference troughs were selected as the characteristic wavelengths for experimental analysis. The experimental results show that the interference troughs with wavelength around 1 550 nm and 1 534 nm both have red shift, and the corresponding temperature sensitivity is 68 pm/ and 44.5 pm/ respectively. The sensing structure has the advantages of simple fabrication, high sensitivity and good application prospects.

     

/

返回文章
返回