何林, 马国鹭, 宋子军, 赵涌, 曾国英, 饶剑. 大尺度阻隔空间姿态组合测量方法研究[J]. 应用光学, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004
引用本文: 何林, 马国鹭, 宋子军, 赵涌, 曾国英, 饶剑. 大尺度阻隔空间姿态组合测量方法研究[J]. 应用光学, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004
HE Lin, MA Guolu, SONG Zijun, ZHAO Yong, ZENG Guoying, RAO Jian. Attitude combined measurement method in large-scale obstructed space[J]. Journal of Applied Optics, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004
Citation: HE Lin, MA Guolu, SONG Zijun, ZHAO Yong, ZENG Guoying, RAO Jian. Attitude combined measurement method in large-scale obstructed space[J]. Journal of Applied Optics, 2022, 43(1): 95-99. DOI: 10.5768/JAO202243.0103004

大尺度阻隔空间姿态组合测量方法研究

Attitude combined measurement method in large-scale obstructed space

  • 摘要: 针对大尺度空间姿态测量中因空间阻隔导致目标特征点遮挡的问题,提出了一种基于多传感器组合的姿态测量方法。通过数字水准仪与姿态探针实现被测特征点的单坐标基准测量,由特征点的水平高差和已知几何约束关系解算得到目标初始姿态值。在此基础上标定高精度倾角传感器与被测目标之间的姿态旋转矩阵,基于坐标变换理论可由传感器输出实时解算目标姿态。实验结果表明:在10 m范围内,姿态测量相对精度优于0.001 5°,重复性测量误差小于0.000 4°,适用于大尺度阻隔空间姿态的精密实时测量。

     

    Abstract: An attitude measurement method based on multi-sensor combination was proposed to solve the problem of target feature points occlusion due to spatial obstruction in large-scale spatial attitude measurement. The single-coordinate reference measurement of the measured feature point was realized by the digital level and the attitude probe, and the initial attitude of the target was obtained by the level difference of the feature point and its known geometric constraint relationship. On this basis, the attitude rotation matrix between high-precision tilt sensor and measured target was calibrated, and then the target attitude was calculated in real time from the sensor output based on the coordinate transformation theory. The experimental results show that the relative accuracy of attitude measurement is better than 0.001 5° in the range of 10 m, and the repeatability measurement error is less than 0.000 4°, which can be used for the precise real-time measurement of large-scale obstructed spatial attitude.

     

/

返回文章
返回