徐冬金, 黄怿, 邓传鲁, 胡程勇, 张小贝, 王廷云. 强电磁干扰环境下光纤束传像系统的设计研究[J]. 应用光学, 2020, 41(6): 1289-1297. DOI: 10.5768/JAO202041.0608001
引用本文: 徐冬金, 黄怿, 邓传鲁, 胡程勇, 张小贝, 王廷云. 强电磁干扰环境下光纤束传像系统的设计研究[J]. 应用光学, 2020, 41(6): 1289-1297. DOI: 10.5768/JAO202041.0608001
XU Dongjin, HUANG Yi, DENG Chuanlu, HU Chengyong, ZHANG Xiaobei, WANG Tingyun. Design and research of image transmission systems with fiber bundles in environment of strong electromagnetic interference[J]. Journal of Applied Optics, 2020, 41(6): 1289-1297. DOI: 10.5768/JAO202041.0608001
Citation: XU Dongjin, HUANG Yi, DENG Chuanlu, HU Chengyong, ZHANG Xiaobei, WANG Tingyun. Design and research of image transmission systems with fiber bundles in environment of strong electromagnetic interference[J]. Journal of Applied Optics, 2020, 41(6): 1289-1297. DOI: 10.5768/JAO202041.0608001

强电磁干扰环境下光纤束传像系统的设计研究

Design and research of image transmission systems with fiber bundles in environment of strong electromagnetic interference

  • 摘要: 为解决电磁辐射干扰环境中图像稳定传输的问题,设计并开发了具有抗强电磁干扰能力的光纤束传像系统。利用ZEMAX光学设计软件,对传像系统中前置物镜和后置目镜分别进行了设计,并根据物镜和目镜的初始像差分布情况,利用优化函数,结合各种操作数,对系统的像差进一步优化。优化结果表明,物镜各视场的光学调制传递函数(MTF)值在空间频率为38 lp/mm处大于0.85,目镜各视场的MTF值在空间频率为120 lp/mm处大于0.3,具有较高的成像质量。针对选用的物镜、目镜、光纤束及CCD的结构特点,设计并制备出系统连接的耦合器件,并搭建了一套传像系统,进行图像传输实验。对系统的成像质量以及影响因素进行分析,采用Gamma算法提高像面亮度,获得了高质量的传输图像。

     

    Abstract: In order to solve the problem of image stable transmission in electromagnetic interference environment, an fiber bundles image transmission system with the ability of anti strong electromagnetic interference was designed and developed. By using ZEMAX, the front objective lens and the rear eyepiece lens in the image transmission system was designed, respectively. And according to the initial aberration distribution of the objective lens and eyepiece lens, the system aberration was further optimized by using the optimized function and various operation numbers. The optimized results show that, the MTF value of each field of view of the objective lens is greater than 0.85 at the spatial frequency of 38 lp/mm, and that of each field of view of the eyepiece lens is greater than 0.3 at the spatial frequency of 120 lp/mm, which has high imaging quality. According to the structural characteristics of the selected objective lens, eyepiece lens, fiber bundles and CCD, the coupling device of system connection is designed and manufactured, and the image transmission system is built for the image transmission experiment. By analyzing the imaging quality and influencing factors of the system, the image brightness is improved by using the Gamma algorithm, and the high-quality transmission image is obtained.

     

/

返回文章
返回