郭贵新, 贾宗合, 付秀华, 刘冬梅, 李晓. 基于散粒磨料振动抛光非球面加工技术研究[J]. 应用光学, 2017, 38(1): 89-93. DOI: 10.5768/JAO201738.0105003
引用本文: 郭贵新, 贾宗合, 付秀华, 刘冬梅, 李晓. 基于散粒磨料振动抛光非球面加工技术研究[J]. 应用光学, 2017, 38(1): 89-93. DOI: 10.5768/JAO201738.0105003
Guo Guixin, Jia Zonghe, Fu Xiuhua, Liu Dongmei, Li Xiao. Aspheric machining technology based on vibration polishing of loose abrasive grains[J]. Journal of Applied Optics, 2017, 38(1): 89-93. DOI: 10.5768/JAO201738.0105003
Citation: Guo Guixin, Jia Zonghe, Fu Xiuhua, Liu Dongmei, Li Xiao. Aspheric machining technology based on vibration polishing of loose abrasive grains[J]. Journal of Applied Optics, 2017, 38(1): 89-93. DOI: 10.5768/JAO201738.0105003

基于散粒磨料振动抛光非球面加工技术研究

Aspheric machining technology based on vibration polishing of loose abrasive grains

  • 摘要: 鉴于非球面光学元件的应用日益广泛,非球面加工技术成为研究热点,提出一种基于散粒磨料振动抛光非球面的加工方法。非球面元件待抛光表面与磨粒均匀接触,通过振动抛光装置为游离磨粒提供抛光作用力,使材料去除均匀,降低表面粗糙度。以材料为ZK-10L、尺寸为Φ55 mm的光学元件为实验对象,分析了振动幅度、抛光液浓度、磨粒粒径和抛光时间对抛光效果的影响,当振动幅度为5 mm、抛光液浓度为80 g/L、磨粒粒径为1 mm时,振动抛光8 h后试件的表面粗糙度从84.4 nm降低到9.4 nm,而试件的面形精度基本不变,从而在保证面形的前提下达到抛光的目的。

     

    Abstract: With widely uses of aspherical optical elements, aspherical machining technology has become hot study topic. This paper presents aspheric processing method based on vibrating polishing of loose abrasive grains. Surface of aspherical optical element fully contacts with loose abrasive grains, and acting force of polishing for loose abrasive grains is provided by vibrating device. In this way, free materials is remove evenly and surface roughness is reduced Taking optical parts with size for Φ55 mm and material for ZK-10L as experiment specimen, influence on polishing effects are analyzed by vibration amplitude, the concentration of polishing liquid, and the impact of particle size and polishing time. When vibration amplitude, concentration of polishing liquid and particle size are 5 mm, 80 g/L and 1mm respectively, surface roughness of the specimen is reduced to 9.4 nm from 84.4 nm after 8h polishing, while specimen surface shape accuracy stays unchanged. In this way purpose of polishing specimen with high-accuracy surface shape is reached.

     

/

返回文章
返回