汪小平, 胡雪兵, 周华飞, 秦良忠, 朱沛东, 吴洪贵. 基于数字图像相关技术的风电叶片静态特性试验研究[J]. 应用光学, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004
引用本文: 汪小平, 胡雪兵, 周华飞, 秦良忠, 朱沛东, 吴洪贵. 基于数字图像相关技术的风电叶片静态特性试验研究[J]. 应用光学, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004
Wang Xiao-ping, Hu Xue-bing, Zhou Hua-fei, Qin Liang-zhong, Zhu Pei-dong, Wu Hong-gui. Experimental study on static characteristics of wind turbine blade withdigital image correlation method[J]. Journal of Applied Optics, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004
Citation: Wang Xiao-ping, Hu Xue-bing, Zhou Hua-fei, Qin Liang-zhong, Zhu Pei-dong, Wu Hong-gui. Experimental study on static characteristics of wind turbine blade withdigital image correlation method[J]. Journal of Applied Optics, 2015, 36(5): 811-817. DOI: 10.5768/JAO201536.0505004

基于数字图像相关技术的风电叶片静态特性试验研究

Experimental study on static characteristics of wind turbine blade withdigital image correlation method

  • 摘要: 进行了风电叶片双轴静载试验,全程采用数字图像相关技术监测其全场三维变形。结果表明,在各工况荷载作用下,风电叶片的三维位移分布具有良好规律,而应变分布则无明显规律。3个方向位移中,平面外位移远大于平面内位移。双轴荷载作用下,风电叶片挥舞方向位移与摆振方向位移均随加载等级增大而增大。在风电叶片全场范围内,挥舞方向位移沿叶片展向逐渐增大,直至叶尖达到最大值。叶片各点的摆振方向位移均为负位移,负位移最大值出现在叶片中部。在叶根至41%叶长(55 cm)区域内,叶片各工况下的展向位移几乎接近于0;而在41%叶长至叶尖区域,当荷载较小时,叶片迎风面纤维的受拉伸长量大于平面外弯曲的展向位移分量而产生正位移;随着荷载增大,叶片平面外弯曲变形的展向位移分量大于迎风面纤维的受拉伸长量而产生负位移。

     

    Abstract: A wind turbine blade was tested for the full-field 3D deformations under biaxial static loads by making use of digital image correlation method. The results show that the 3D displacements of the wind turbine blade are well distributed while the strains are not. Among the three displacements, the out-of-plane displacement is much larger than the in-plane displacement. The flapwise displacements and edgewise displacements of the wind turbine blade induced by biaxial loads increase as the load increases. In the full field of the wind turbine blade, the flapwise displacements along the spanwise increase gradually, reaching maximum at the blade tip. The edgewise displacements of the wind turbine blade are all compressive displacements, the maximum of which are generated in the middle part of the blade. The spanwise displacements generated by biaxial loading are almost 0 in the region of 0~41% of the blade length. In the rest region of the blade, the tensive spanwise displacements are generated at the beginning of the loading, and compressive spanwise displacements are yielded as the load increases.

     

/

返回文章
返回