左晓舟, 王惠林, 周云, 惠刚阳, 张云龙, 赵红军, 余炳伟. 主镜组件热光学特性分析与热控技术研究[J]. 应用光学, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005
引用本文: 左晓舟, 王惠林, 周云, 惠刚阳, 张云龙, 赵红军, 余炳伟. 主镜组件热光学特性分析与热控技术研究[J]. 应用光学, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005
ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005
Citation: ZUO Xiaozhou, WANG Huilin, ZHOU Yun, XI Gangyang, ZHANG Yunlong, ZHAO Hongjun, YU Bingwei. Research on thermal optical properties and thermal control technology of primary mirror assembly[J]. Journal of Applied Optics, 2023, 44(3): 500-506. DOI: 10.5768/JAO202344.0301005

主镜组件热光学特性分析与热控技术研究

Research on thermal optical properties and thermal control technology of primary mirror assembly

  • 摘要: 针对共光路系统对环境温度的适应性问题,以温度-光学变形特性研究为基础,提出了一种基于综合传热的主镜组件分区域热控方法。建立了主镜组件的传热模型并分析了典型热控工况下的温度分布特性;对不同材质的主镜进行了热仿真,以热光学试验结果修正模型,使主镜温度场的仿真与实测结果绝对偏差小于1.4 ℃,同时确定了主镜组件的温度梯度控制阈值;采用分区传热策略,使主镜组件达到高温升水平、低温度梯度的热控目标。以某主镜组件为对象进行了仿真与试验:当主镜平均温升达到16 ℃以上时,镜体轴向温度梯度≤2.5 ℃,径向与周向温度梯度≤2.4 ℃,主镜面形变化量小于0.005 λ,该结果可为共光路系统的整体热控方案设计提供优化思路。

     

    Abstract: Aiming at the adaptability problem of common optical path system to ambient temperature, a regional thermal control method of primary mirror assembly based on comprehensive heat transfer was proposed on the basis of the temperature-optics deformation characteristics. The heat transfer model of the primary mirror assembly was established, and the temperature distribution properties under typical conditions were analyzed. The thermal simulation of the primary mirror with different materials was carried out, and the model was modified with the thermal optical test results, so that the absolute deviation between the simulation and the measured results of the temperature field was less than 1.4 ℃. At the same time, the temperature gradient control threshold of the primary mirror assembly was determined. On this basis, the regional heat transfer strategy was adopted to make the primary mirror assembly reach the thermal control goal of high temperature rise level and low temperature gradient. Taking a primary mirror assembly as the object, the simulation and test were carried out. The results show that when the average temperature rise of the primary mirror reaches more than 16 ℃, the axial temperature gradient of the mirror is equal or lesser than 2.5 ℃, the radial and circumferential temperature gradient is equal or lesser than 2.4 ℃, and the variation of the primary mirror shape is less than 0.005 λ, which can provide an optimization idea for the overall thermal control design of the common optical path system.

     

/

返回文章
返回