刘青龙, 杨崇民, 张建付, 米高园, 韩俊, 金柯. 大曲率球面零件光学膜厚分布数值计算[J]. 应用光学, 2012, 33(6): 1128-1132.
引用本文: 刘青龙, 杨崇民, 张建付, 米高园, 韩俊, 金柯. 大曲率球面零件光学膜厚分布数值计算[J]. 应用光学, 2012, 33(6): 1128-1132.
LIU Qing-long, YANG Chong-min, ZHANG Jian-fu, MI Gao-yuan, HAN Jun, JIN Ke. Numerical calculation for optical film-thickness distribution oflarge curvature spherical accessory[J]. Journal of Applied Optics, 2012, 33(6): 1128-1132.
Citation: LIU Qing-long, YANG Chong-min, ZHANG Jian-fu, MI Gao-yuan, HAN Jun, JIN Ke. Numerical calculation for optical film-thickness distribution oflarge curvature spherical accessory[J]. Journal of Applied Optics, 2012, 33(6): 1128-1132.

大曲率球面零件光学膜厚分布数值计算

Numerical calculation for optical film-thickness distribution oflarge curvature spherical accessory

  • 摘要: 为了对沉积在大曲率球面零件表面的光学膜厚分布进行理论分析计算,首先确定了工艺配置,然后通过数学建模确定出计算函数式,最后通过数值积分分别对蒸发源为点源(n=0)和蒸发源为面源(n=1,2)进行了计算。计算结果与实验结果比较后表明:在本文确定的工艺条件下,n=2时计算结果与实验结果比较吻合。证明采用本文设计的建模方法结合恰当的蒸发源发射特性,通过数值计算,完全可以对大曲率球面零件的膜厚分布进行计算。

     

    Abstract: In order to theoretically analyze and calculate the optical film-thickness distribution deposited on the surface of large curvature spherical accessory, we firstly determined the processing configuration, then determined the calculation function formula through mathematic model, finally carried out the calculation through numerical integration when the evaporation source was point evaporator (n=0) and plane evaporator (n=1, 2) respectively. Results of the calculation were compared with the experiment results. It is revealed that the calculation results when n=2 accord with the experiment results well under the processing conditions determined in this paper. It is also proved that the film-thickness deposited on the surface of large curvature spherical accessory can be calculated by numerical calculation adopting the designed modeling method and appropriate beam characteristics of evaporation source.

     

/

返回文章
返回