LI Bai-hong, YAN Zheng-xin, ZHANG Tao, LIU Wei, LI Min. High precision positioning based on chirped-pulse interferometry[J]. Journal of Applied Optics, 2012, 33(2): 355-359.
Citation: LI Bai-hong, YAN Zheng-xin, ZHANG Tao, LIU Wei, LI Min. High precision positioning based on chirped-pulse interferometry[J]. Journal of Applied Optics, 2012, 33(2): 355-359.

High precision positioning based on chirped-pulse interferometry

More Information
  • A new scheme is presented for high precision positioning based on chirped-pulse interferometry(CPI). In this scheme, a pair of oppositely chirped optical pulses with strong classical frequency correlations are combined at a beamsplitter. The output beams with two different paths are recombined and focused onto a nonlinear crystal. High precision positioning with magnitude of micron is obtained theoretically by detecting sum frequency interference signal as a function of relative delay between two different paths.The impact of difference between chirp and anti-chirp pulse on positioning is studied. It is shown that positioning has a high tolerance of difference between chirp and anti-chirp parameter. Our scheme exhibits all the advantages of quantum spatial positioning based on the Hong-Ou-Mandel(HOM) quantum interference, but with more simple experimental setup ,robustness against loss and greater signals, which provide more improvements in practical maneuverability.
  • [1]PARKINSON B W,SPILKER J J .Global positioning system: theory and applications: I and II[M]. Washington:Amer. Inst. Aero. Astro., 1996.
    [2]GIOVANNETTI V, LLOYD S,MACCONE L.Quantum enhanced positioning and clock synchronization[J]. Nature, 2001, 412:417-419.
    [3]GIOVANNETTI V, LLOYD S,MACCONE L.Positioning and clock synchronization through entanglement [J]. Phys. Rev.A, 2002, 65:022309.
    [4]BAHDER T B. Quantum positioning system[EB/OL]. 2004-08, arXiv:quantph/0406126v118.2010-06-03.
    [5]HONG C K,OU Z Y, MANDEL L.Measurement of subpicosecond time intervals between two photons by interference[J]. Phys.Rev.Lett.,1987, 59:2044-2046.
    [6]OU Z Y ,MANDEL L. Observation of spatial quantum beating with separated photodetectors[J].Phys. Rev. Lett., 1988,61:54-57.
    [7]KIESS T E, SHIH Y H, SERGIENKO A V,et al.Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by type-II parametric down-conversion[J].Phys.Rev.Lett.,1993,71:3893-3897.
    [8]SERGIENKO A V, SHIH Y H,RUBIN M H.Experimental evaluation of a two-photon wave packet in type-II parametric downconversion[J].Opt. Soc. Am. B, 1995(12):859-862.
    [9]KALTENBAEK R,LAVOIE J,BIGGERSTAFF D N,et al.Quantum-inspired interferometry with chirped laser pulses[J].Nature Phys,2008(4): 864-868.
    [10]RESCH K J,PREGNELL K L, PREVEDEL R, et al.Time-reversal and super-resolving phase measurements[J]. Phys.Rev.Lett., 2007,98:223601.
    [11]李晓莉,石顺祥,刘红军,等.高效三通光参量啁啾脉冲放大器[J].应用光学,2010,31(3):508-511.
    LI Xiao-li, SHI Shun-xiang, LIU Hong-jun,et al. High efficient triple-passed optical parametric chirped pulse amplification[J]. Journal of Applied Optics, 2010,31(3):508-511.(in Chinese with an English abstract)
    [12]PESSOT M,MAINE P,MOUROU G.1000 times expansion compression of optical pulses for chirped pulse amplication[J].Opt. Commun.1987,62:419-421.
    [13]PERINA J., SERGIENKOV, JOST B M, et al. Dispersion in femtosecond entangled two-photon interference[J]. Phys. Rev. A, 1999,59(3): 2359-2368.
  • Related Articles

    [1]ZHANG Zeyu, ZHANG Hong, WU Lingfan, YANG Yifan, LI Xuliang. FPGA-based real-time Bayer demosaicking algorithm and its implementation[J]. Journal of Applied Optics, 2022, 43(2): 240-247. DOI: 10.5768/JAO202243.0202002
    [2]XU Xiangxiang, WU Yang, SU Hang, LIU Jinlong, YANG Huizhen, GONG Chenglong. FPGA -based SPGD algorithm implementation of adaptive optical system[J]. Journal of Applied Optics, 2021, 42(5): 810-816. DOI: 10.5768/JAO202142.0501008
    [3]MAO Xinrong, LIU Kaiming, WANG Leyi, HAN Xiaobing. Image distortion correction algorithm based on FPGA[J]. Journal of Applied Optics, 2020, 41(1): 86-93. DOI: 10.5768/JAO202041.0102004
    [4]YE Mao, HUANG Pingao, LYU Yang, TANG Ning, LIU Jianwei. Research and implementation of real-time fog and haze video image restoration system based on FPGA[J]. Journal of Applied Optics, 2019, 40(5): 812-817. DOI: 10.5768/JAO201940.0502004
    [5]HE Jiaxiang, WAN Shengpeng, SONG Zaobiao, YANG Siyu, XU Jin. FPGA-based PPM modulated visible light image transmission system[J]. Journal of Applied Optics, 2019, 40(1): 162-166. DOI: 10.5768/JAO201940.0108002
    [6]Chen Jing, Tian Minqiang, Bai Weining, Liu Bo, Xi Jin. Avionics bus measurement system used for EO equipments[J]. Journal of Applied Optics, 2018, 39(6): 947-950. DOI: 10.5768/JAO201839.0608002
    [7]Yan Pengfei, Gao Qiang, Qiu Junpeng, Zhang Jianxiang, Zhang Baocheng, Yan Hongwei. Demodulation system of fiber Bragg grating sensor based on FPGA[J]. Journal of Applied Optics, 2016, 37(6): 942-947. DOI: 10.5768/JAO201637.0608002
    [8]Ma Ning, Li Xiao-yi, Yang Gang, Chen Mou. Design of UV DPIM modulation system based on FPGA[J]. Journal of Applied Optics, 2015, 36(1): 155-160. DOI: 10.5768/JAO201536.0108004
    [9]ZHU Zhen, XU Kailuan, LIU Bing. FPGA and DSP based Micro-INS[J]. Journal of Applied Optics, 2011, 32(4): 602-606.
    [10]HOU Feng-qian, NING Zi-li, BI Bo-rui. Implementation of plesiochronous digital multiplexer based on FPGA for the FSO system[J]. Journal of Applied Optics, 2010, 31(2): 180-184.

Catalog

    Article views (3291) PDF downloads (634) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return