Citation: | LI Wei-xiang, MA Xiao-hong, Lu Hui, ZHAO hua, feng. Enhanced measurement precision of angular surface plasmon resonance sensor[J]. Journal of Applied Optics, 2012, 33(2): 342-346. |
[1]NYLANDER C, LIEDBERG B, LIND T. Gas detection by means of surface plasmon resonance[J]. Sensors & Actuators, 1982,3:79-88.
[2]LIEDBERG B, NYLANDER C, LUNDSTROM I. Surface plasmon resonance or gas detection and biosensing[J]. Sensors & Actuators ,1983,4(2):299-304. [3]HOMOLA J. Surface plasmon resonance sensors for detection of chemical and biological species[J]. Chem. Rev., 2008,108(2): 462-493. [4]NATSUMET , TAOKA M, MANKI H , et al. Rapid analysis of protein interactions: on-chip micropurification of recombinant protein expressed in Esherichia coli[J].Proteomics, 2002,2(9): 1247-1253. [5]OLI M W,MCARTHUR W P , BRADY L J.A whole cell BIAcore assay to evaluate P1-mediated adherence of Streptococcus mutans to human salivary agglutinin and inhibition by specific antibodies[J]. J. Microbiol. Meth., 2006,65(3): 503-511. [6]YIN J N,CHIEN F C,LIN C Y,et al. Angular-interrogation attenuated total reflection metrology system for plasmonic sensors[J]. Applied Optics, 2005,44(29): 6155-6162. [7]RAETHER H.Surface plasmons on smooth and rough surfaces and on gratings[J]. New York: Springer-Verlag, 1998. [8]杨欢,李飞,罗先刚,等. 基于复合纳米结构的局域表面等离子体光学传感器,光学与光电技术,2010,8(2):80-83. YANG Huan, LI Fei, LUO Xiao-gang, et al.Localized surface plasmonic biosensor based on composite nanostructures[J]. Optics & Optoelectronic Technology, 2010, 8(2): :80-83.(in Chinese with an English Abstract) [9]MA You-qiao , ZHOU Jun, WANG Zhen-yong.Surface plasmon waves on structured metal surface with periodic grooves modified by perpendicular cuts[J].IEEE Photonics Technology Letters, 2010, 22(7):450-452. |
[1] | SI Yuhan, YE Xiaojun, WANG Xiaoliang, LI Hongbo. High wear resistant double-layer antireflection coatings for near-infrared vehicular lidar[J]. Journal of Applied Optics, 2024, 45(1): 192-198. DOI: 10.5768/JAO202445.0105003 |
[2] | Chen Fen-gjin, Su Xian-jun, Ma Sheng-xi, Sun Yong-yan, Yan Kai. Reliability of Ge-based MW antireflective films in hygrothermal environment[J]. Journal of Applied Optics, 2015, 36(1): 93-97. DOI: 10.5768/JAO201536.0105001 |
[3] | Xiao Xiang-jiang, Tu Jie-lei, Bai Hong-yan. ZnS/Al2O3/MgF2 antireflection coating with wide spectrum forGaAs multi-junction solar cells[J]. Journal of Applied Optics, 2014, 35(4): 670-674. |
[4] | FAN Lu-qing, LI Xiang-ning, WANG Yu, LIU Jie. TIR collimating lens design based on freeform surface[J]. Journal of Applied Optics, 2013, 34(2): 325-329. |
[5] | CHEN Da-xiang. Optical processing technique of small-radius cylindrical lens[J]. Journal of Applied Optics, 2012, 33(3): 580-583. |
[6] | ZHAO Bo, JIANG Jiu-xing, JI Guang-ju, WU Feng-min. Adjusting chroma of top-emitting white organic light-emitting device based on out-coupling layer of MoOx[J]. Journal of Applied Optics, 2010, 31(3): 499-502. |
[7] | WANG Peng. Optimized analysis of relief depth and substrate material of multi-layer diffractive elements[J]. Journal of Applied Optics, 2009, 30(3): 382-385. |
[8] | WU Su-yong, LONG Xing-wu. Optimal design of antireflective films based on genetic algorithms[J]. Journal of Applied Optics, 2008, 29(4): 542-547. |
[9] | SHI Jian-tao, ZHAO Xing-mei, GUO Hong-xiang. Fabrication of anti-reflection film on zinc selenide substrate[J]. Journal of Applied Optics, 2008, 29(supp): 15-17. |
[10] | PAN Yong-qiang, ZHU Chang, HANG Ling-xia. Study on high performance infrared wideband ( 7~11.5μm)antireflective film on germanium substrate[J]. Journal of Applied Optics, 2005, 26(6): 63-65. |