SHI Da-lian, BAI Qing-lan, FENG Yu-tao, WEN De-sheng. In-flight calibration of atmospheric wind and temperature measurement spectrometer[J]. Journal of Applied Optics, 2011, 32(5): 926-930.
Citation: SHI Da-lian, BAI Qing-lan, FENG Yu-tao, WEN De-sheng. In-flight calibration of atmospheric wind and temperature measurement spectrometer[J]. Journal of Applied Optics, 2011, 32(5): 926-930.

In-flight calibration of atmospheric wind and temperature measurement spectrometer

More Information
  • The atmospheric wind fields and temperature fields are important atmospherical parameters. The atmospheric wind and temperature measurement technology was already developed in many nations for years, and there is increasingly demanded in China now. Atmospheric wind and temperature are measured by the spectrometers of high spectral resolution, which detects the Doppler line shift and expanding of the special spectrum line in the atmosphere. The in-flight calibration technology is critical for high resolution measurement of the atmospheric wind. Several typical atmospheric wind measurement spectrometers are reviewed, analyzed and summarized. The in-flight calibration technology used in these spectrometers is given.
  • [1]王咏梅,付利平,杜述松,等. 中高层大气风场和温度场星探测技术研究进展[J].空间科学学报,2009, 29(1):1-5.

    WANG Yong-mei, FU Li-ping, DU Shu-song, et al. Development for detecting upper atmospheric wind and temperature from satellite[J]. Chin. J. Space Sci., 2009, 29(1):1-5.(in Chinese with an English abstract)

    [2]SKINNER W R, HAYS P B, GRASSL H J, et al. High-Resolution doppler imager on the upper atmosphere research satellite[J]. SPIE, 1994, 2266:281-293.

    [3]SHEPHERD G, THUILLIER G, GAULT W A, et al. WINDII, the imaging interferometer On the UARS[J]. J. Geophys. Res., 1993, 98:10725-10750.

    [4]THUILLIER G, GAULT W, BRUN J, et al. In-flight calibration of the wind imaging interferometer (WINDII) on board the upper atmosphere research satellite[J]. Applied Optics, 1998, 37(8):1356-1369.

    [5]HERSOM C H, SHEPHERD G G. Characterization of the wind imaging interferometer[J]. Applied Optics, 1995, 34(16):2871-2879.

    [6]SCHOEBERL M R, DOUGLASS A R, JACKMAN C H. Overview and highlights of the UARS mission[J]. SPIE, 1994, 2266: 254-265.

    [7]HAYS P B. High-resolution optical measurements of atmospheric winds from space. 1: Lower atmosphere molecular absorption[J]. Applied Optics, 1982, 21:1136-1141.

    [8]HAYS P B, KILLEEN T L, KENNEDY B C. The Fabry-Perot interferometer on dynamics explorer[J]. Space Science Instrumentation, 1981, 5:395-416.

    [9]HAYS P B, ABREU V J, DOBBS M E, et al. The high resolution doppler imager on the upper atmosphere research satellite[J]. Journal of Geophysical Research, 1993, 98: 10713-10723.

    [10]GRASSL H J, SKINNER W R, HAYS P B, et al. Atmospheric wind measurements with the high resolution doppler imager (HRDI) [J]. Journal of Spacecraft and Rockets, 1995, 32(1):169-176.

    [11]YEE J H, CAMERON G E, KUSNIERKIEWICZ  D Y. Overview of TIMED[J]. SPIE, 1999, 3756:244-254.

    [12]KILLEEN T L, SKINNER W R, JOHNSON R M, et al. TIMED doppler interferometer (TIDI)[J]. SPIE, 1999, 3756:289-301.

    [13]SKINNER W R. Tidi  felight calibration sequence[EB/OL]. US:University of Michigan Space Physics Research Laboratory, 2002. [2010-11-01] . http://tidi.engin.umich.edu/scripts/info/docs.pl.

    [14]SKINNER W R, NICIEJEWSKIR J, KILLEEN T L, et al. Operational performance of the Timed doppler interferometer (TIDI) [J]. SPIE, 2003, 5157:47-57.
  • Related Articles

    [1]HE Dahua, CHENG Pu, LI Yangyang. Monte Carlo method for solving underwater light field[J]. Journal of Applied Optics, 2023, 44(2): 268-274. DOI: 10.5768/JAO202344.0201005
    [2]GAO Yang, WAN Xinjun, XIE Shuping. Stress measurement of transparent elements based on polarized camera[J]. Journal of Applied Optics, 2022, 43(2): 284-290. DOI: 10.5768/JAO202243.0203002
    [3]YU Buzhao, WANG Jiming, WU Tong, HE Chongjun, LU Yuangang, LIU Youwen. Optical rotation properties of TeO2 crystal based on vector light field[J]. Journal of Applied Optics, 2021, 42(6): 963-968. DOI: 10.5768/JAO202142.0601003
    [4]Xue Peng, Wang Zhibin, Zhang Rui, Xue Rui, Wang Yujiang, Xie Kunyang. Imaging spectropolarimetric detection using acousto-optic tunable filter and liquid crystal variable retarder[J]. Journal of Applied Optics, 2016, 37(4): 578-583. DOI: 10.5768/JAO201637.0403004
    [5]Yu Xun, Yang Ye, Jiang Xu, Wu Ji, Hu Fei. Recognition of camouflage targets by polarization spectral imaging system[J]. Journal of Applied Optics, 2016, 37(4): 537-541. DOI: 10.5768/JAO201637.0402001
    [6]ZHANG Rui, WANG Zhi-bin, LI Xiao, CHEN You-hua, WANG Yao-li, YANG Qiang. Spectropolarimeter measurement based on photoelastic-modulator and Fourier transform[J]. Journal of Applied Optics, 2014, 35(1): 95-99.
    [7]DENG Li-xin, FAN Qing-chun, YANG Jian-kun, TAN Ji-chun. Azimuth angle measurement of space-borne InSAR interferometric baseline vector[J]. Journal of Applied Optics, 2010, 31(6): 974-979.
    [8]JIA Wen-wu, WANG Yue-feng, HUANG Feng. Rigorous vector analysis for effect of wavelength drift on Fresnel lens[J]. Journal of Applied Optics, 2008, 29(5): 830-832.
    [9]SUN Xue-ming, ZHANG Hui-jian, ZUO Meng, GU Wan-yi, XU Da-xiong. Jones Matrix for Second-order Polarization Mode Dispersion of a Single-Mode Fiber[J]. Journal of Applied Optics, 2005, 26(1): 12-15.
    [10]KUANG Cui-fang, FENG Qi-bo, LIU Xin. Analysis of Reflection Property of Cube-corner retroreflector with Vector Expression[J]. Journal of Applied Optics, 2004, 25(2): 25-27.

Catalog

    Article views (3156) PDF downloads (775) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return