GAO Shao-shu, JIN Wei-qi, WANG Ling-xue, WANG Ji-hui, WANG xia. Objective quality assessment of image fusion[J]. Journal of Applied Optics, 2011, 32(4): 671-677.
Citation: GAO Shao-shu, JIN Wei-qi, WANG Ling-xue, WANG Ji-hui, WANG xia. Objective quality assessment of image fusion[J]. Journal of Applied Optics, 2011, 32(4): 671-677.

Objective quality assessment of image fusion

More Information
  • With the rapid development of image fusion technology, image fusion quality evaluation plays a very important guiding role in selecting or designing image fusion algorithms. Objective image quality assessment is an interesting research subject in the field of image quality assessment. The ideal objective evaluation method is consistent with human perceptual evaluation. The paper gives an overview of existing image fusion quality assessment algorithms. Firstly, basic objective evaluation specifications are presented briefly. Secondly, objective image quality assessment algorithms are classified into 4 categories: based on edge information preservation, based on structural similarity (SSIM), based on information theory and based on contrast. They are introduced with emphasis on their strategies and characteristics. At last, the trends of future research are summarized. Objective image quality assessment considering features of the human visual system or based on specific visual tasks is more and more popular. Quality assessments of no reference image and color fusion image are important development directions in future.
  • [1]TOET A, IJSPEERT J K, WAXMAN A M, et al. Fusion of visible and thermal imagery improves situational awareness[J]. Displays, 1997, 18 (2): 85-95.
    [2]RILEY T, SMITH M. Image fusion technology for security and surveillance applications[J]. Optics and Photonics for Counterterrorism and Crime Fighting II, The International Society for Optical Engineering, 2006, 6402: 640204.
    [3]TOET A. Color image fusion for concealed weapon detection[J]. SPIE, 2003, 5071: 372-380.
    [4]ZOU X, BHANU B. Tracking humans using multi-modal fusion[J]. IEEE, 2005, 25 (25): W01-30-1-W01-308.
    [5]KONG S G, HEO J, BOUGHORBEL F, et al. Multiscale fusion of visible and thermal ir images for illumination-invariant face recognition[J]. International Journal of Computer Vision, 2007, 71 (2): 215-233.
    [6]DAS S, ZHANG Y. Color night vision for navigation and surveillance[J]. Transportation Research Record, 2000, 1708: 40-46.
    [7]TOET A, HOGERVORST M A, NIKOLOV S G, et al. Towards cognitive image fusion[J]. Information Fusion, 2010, 11 (2): 95-113.
    [8]KING B, LEUNG L W. Comparison of image data fusion techniques using entropy and INI[J]. 22nd Asian Conference on Remote Sensing, 2001, 5 (9): 132-136.
    [9]康圣, 王江安, 宗思光,等.图像融合的量化评价方法及实验分析[J]. 光电子技术与信息,2006,19(2): 59-63.
    KANG Sheng, WANG Jiang-an, ZONG Si-guang, et al. Objective evaluation and experimental analysis of multisensor image fusion[J]. Optoelectronic Technology and Information, 2006, 19 (2): 59-63. (in Chinese with an English abstract)
    [10]宋乐. 异源图像融合及其评价方法的研究[D]. 天津:天津大学, 2008.
    SONG Le. Research on the method for different-source image fusion and its evaluation[D]. Tianjin:Tianjin University, 2008. (in Chinese)


    [11]杨威, 赵剡, 许东. 基于人眼视觉的结构相似度图像质量评价方法[J]. 北京航空航天大学学报, 2008, 34(1): 1-4.
    YANG Wei, ZHAO Yan, XU Dong. Method of image quality assessment based on human visual system and structural similarity[J]. Journal of Beijing University of Aeronautics and Aastronautics, 2008, 34(1): 1-4. (in Chinese with an English abstract)
    [12]XYDEAS C, PETROVIC V. Objective image fusion performance measure[J]. Electronics Letters, 2000, 36 (4): 308-309.
    [13]XYDEAS C, PETROVIC V. Objective pixel-level image fusion performance measure[J]. SPIE, 2000, 4051: 89-99.
    [14]PETROVIC V, XYDEAS C. Sensor noise effects on signal-level image fusion performance[J]. Information Fusion, 2003, 4(3): 167-183.
    [15]PETROVIC V, XYDEAS C. Evaluation of image fusion performance using visible differences[J]. Lecture Notes in Computer Science, Computer Vision ECCV, 2004, 3023: 380-391.
    [16]WANG Z , BOVIK A C. A Universal image quality index[J]. IEEE Signal Processing Letters, 2002, 9(3): 81-83.
    [17]WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error measurement to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
    [18]WANG Z, SIMONCELLI E P, BOVIK A C. Multi-scale structural similarity for image quality assessment[J]. Signals, Systems and Computers, IEEE, 2003, 2: 1398-1402.
    [19]PIELLA G, HEIJMANS H A. A new quality metric for image fusion[J]. International Conference on Image Processing, IEEE, 2003, 2: 173-176.
    [20]PIELLA G. New quality measures for image fusion[C]. Proc. of the 7th International Conference on Information Fusion, Sweden:Stockholm, 2004, 542-546.
    [21]CVEJIC N, ?OZA A, BULL D, et al. A similarity metric for assessment of image fusion algorithms[J]. International Journal of Signal Processing , 2005, 2(3):178-182.
    [22]YANG Cui, ZHANG Jian-qi, WANG Xiao-rui, et al. A novel similarity based quality metric for image fusion[J]. Information Fusion, 2008, 9(2): 156-160.
    [23]ZHENG You-zhi, QIN Zheng. Objective image fusion quality evaluation using structural similarity[J]. Tsinghua Science and Technology, 2009, 14(6): 703-709.
    [24]QU G, ZHANG D, YAN P. Information measure for performance of image fusion[J]. Electronics Letters, 2002, 38 (7): 313-315.
    [25]RAMESH C , RANJITH T. Fusion performance measures and a lifting wavelet transform based algorithm for image fusion[J]. Information Fusion, 2002, 1: 317-320.
    [26]WANG Qiang, SHEN Yi, ZHANG Ye, et al. A quantitative method for evaluating the performances of hyperspectral image fusion[J]. IEEE Transactions on Instrumentation and Measurement. 2003, 52(4): 1041-1047.
    [27]WANG Qiang, ZHANG Ye, LI Shuo, et al. A quantitative and comparative analysis of hyperspectral data Fusion Performance[J]. Journal of Harbin Institute of Technology (New Series), 2002, 9(3): 234-238.
    [28]WANG Qiang, SHEN Yi, ZHANG Ye. A quantitative method to evaluate the performance of hyperspectral Data fusion[J]. IEEE, 2002, 2:919-923.
    [29]WANG Qiang, SHEN Yi, ZHANG Ye. A fast method to evaluate the performances of image fusion techniques and its error analysis[J]. IEEE, 2003, 1: 823-826.
    [30]WANG Qiang, SHEN Yi. Performances evaluation of image fusion techniques based on nonlinear correlation measurement[J]. IEEE, 2004, 1: 472-475.
    [31]WANG Qiang, SHEN Yi, ZHANG Ye,et al. Fast quantitative correlation analysis and information deviation analysis for evaluating the performances of image fusion techniques[J]. IEEE Transactions on Instrumentation and Measurement,2004, 53(5): 1441-1447.
    [32]TSAGARIS V, ANASTASSOPOULOS V. A global measure for assessing image fusion methods[J]. Optical Engineering, 2006, 45(2): 026201.
    [33]TSAGARIS V, ANASTASSOPOULOS V. Information measure for assessing pixel-level fusion methods[J]. SPIE, 2004, 5573: 64-71.
    [34]TSAGARIS V. Objective evaluation of color image fusion methods[J]. Optical Engineering, 2009, 48(6): 066201.
    [35]TSAGARIS V, ANASTASSOPOULOS V. Assessing information content in color images[J]. Journal of Electronic Imaging, 2005, 14(4): 043007.
    [36]SHI J S, JIN W Q, WANG L X, et al. Objective evaluation of color fusion of visual and IR imagery by measuring image contrast[J]. SPIE, 2005, 5640: 594-601.
    [37]PELI E. Contrast in complex images[J]. J. Optical Soc. Am A, 1990, 7 (10): 2032-2040.
    [38]NADENAU M. Integration of human colour vision models into high quality image compression[D].Cole Switzerland: Polytechnique Fédérale de Lausanne,  2000.
    [39]CHEN Y, BLUM R S. A new automated quality assessment algorithm for image fusion[J]. Image and Vision Computing, 2009, 27 (10): 1421-1432.
    [40]CHEN Y, BLUM R S. A new automated quality assessment algorithm for night vision image fusion[J]. IEEE, 2007, 14: 518-523.
     
     
     


    (上接第640页)


    [8]苏奎峰, 吕强, 耿庆锋, 等. TMS320F2812原理与开发[M]. 北京: 电子工业大学出版社, 2005.
    SU Kui-feng, LU Qiang, GENG Qing-feng, et al. TMS320F2812 principles and development[M]. Beijing: Electronic Industry University Press, 2005. (in Chinese)
    [9]薛定宇, 陈阳泉. 基于MATLAB/Simulink的系统仿真技术与应用[M]. 北京: 清华大学出版社, 2002.
    XUE Ding-yu, CHEN Yang-quan. Simulation technology and application based on MATLAB/Simulink system[M]. Beijing: Tsinghua University Press, 2002. (in Chinese)
  • Related Articles

    [1]ZHANG Yuetong, CHEN Wenliang, WANG Xiangjun, LIU Feng, WANG Meiyi. FDM printing trajectory measurement and quality evaluation method based on infrared imaging[J]. Journal of Applied Optics, 2024, 45(5): 1008-1018. DOI: 10.5768/JAO202445.0503003
    [2]WANG Xueqi, HE Zehao, ZHU Qiaofen, CAO Liangcai. Image quality evaluation method and system for head-mounted three-dimensional display[J]. Journal of Applied Optics, 2024, 45(3): 598-607. DOI: 10.5768/JAO202445.0301002
    [3]ZHAO Yonggang, SUN Chunsheng. Light source calibration for divided focal plane polarization imaging system[J]. Journal of Applied Optics, 2022, 43(5): 967-972. DOI: 10.5768/JAO202243.0503006
    [4]WANG Huilin, LIU Jilong, WU Xiongxiong, LUAN Yadong. Image quality influencing factors for aerial electro-optical detection[J]. Journal of Applied Optics, 2021, 42(5): 817-829. DOI: 10.5768/JAO202142.0502001
    [5]Wang Fan, Ni Jinping, Dong Tao, Guo Rongli. No-reference image quality assessment method based on visual attention mechanism and sharpness metric approach[J]. Journal of Applied Optics, 2018, 39(1): 51-56. DOI: 10.5768/JAO201839.0101009
    [6]Wu Haibing, Tao Shengxiang, Zhang Liang, Zhang Jing. Tricolor acquisition and true color images fusion method under low illumination condition[J]. Journal of Applied Optics, 2016, 37(5): 673-679. DOI: 10.5768/JAO201637.0502001
    [7]an Le-le, Li Hui, Qiu Ju-neng, Liang Ping. Image quality assessment method based on regional contrast and structural similarity[J]. Journal of Applied Optics, 2015, 36(1): 58-63. DOI: 10.5768/JAO201536.0102002
    [8]Guo Lian-peng, Chen Xiang-ning, Liu Bin, Liu Tian-jian. 3D-object reconstruction based on fusion of depth images by Kinect sensor[J]. Journal of Applied Optics, 2014, 35(5): 811-816.
    [9]FAN Yuan-yuan, SANG Ying-jun, SHEN Xiang-heng. No-reference image SNR assessment under visual masking[J]. Journal of Applied Optics, 2012, 33(4): 711-716.
    [10]FAN Yuan-yuan, SANG Ying-jun, SHEN Xiang-heng. Optimization of image quality assessment parameters based on back-propagation neural network[J]. Journal of Applied Optics, 2011, 32(6): 1150-1155.

Catalog

    Article views (9251) PDF downloads (1391) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return